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Abstract

Brain abnormalities, including tumors, cancers, and neurodegenerative diseases, are

rising globally due to factors like pollution, unhealthy lifestyles, and stress. Neurode-

generative diseases such as Alzheimer’s and Epilepsy are particularly challenging as

they remain incurable, and their diagnosis is often time-consuming. The complex-

ity of the brain makes identifying the causes of these disorders difficult, hindering

effective treatment strategies. Consequently, neurologists and neuroscientists are

increasingly relying on computer scientists to enhance diagnostic procedures and fa-

cilitate faster, more effective treatment. This thesis focuses on leveraging computer

vision techniques to tackle real-world problems related to the diagnosis, treatment,

and primary care of brain disorders, specifically Alzheimer’s disease and brain tu-

mors. We first discuss about the works related to brain tumors. We first developed

a 3D brain tumor segmentation model. Accurate segmentation is vital for diagnosis

and surgery. The deep graph cut (DGC) model that we proposed combines a 3D

UNet with graph cut algorithms, refining the energy function using UNet probability

maps. This method outperformed existing approaches and the model’s robustness

and accuracy make it valuable for clinical applications. Brain tumor surgery can

benefit from segmentation, but treatment planning requires tumor classification.

For this task, we did another work and developed a coarse-to-fine approach using

radiology and histopathology data. A 3D CNN model first detects glioblastoma

from MRI images. Then, 2D CNN features are extracted from Whole Slide Images

(WSI) at two magnification levels. A Graph Convolutional Network (GCN) clas-

sifies non-glioblastoma cases. This method achieved a balanced accuracy of 91.4%

on the CPM-RadPath2020 dataset, demonstrating enhanced classification accuracy

and resilience. Further investigation focused on predicting genetic markers for brain

tumors, essential for treatment planning. We developed an algorithm to predict five

glioma-causing biomarkers (IDH, ATRX, MGMT, 1p/19q codeletion, and TERT)

using WSI and genetic data. A composite loss function captures individual, pairwise,

and group behaviors of the biomarkers. This approach achieved state-of-the-art pre-



diction performance on a new benchmark dataset, providing a comprehensive prog-

nosis and treatment strategy for glioma patients. We then studied neurodegenerative

diseases and solved certain difficult problems to improve therapy and reduce neuro-

radiologist’s and neurosurgeon’s workload. Our first approach classifies Alzheimer’s

into four stages using Diffusion Tensor Imaging (DTI) data. The leading cause of de-

mentia is Alzheimer’s disease (AD), causing memory loss and cognitive decline. This

work uses 3D DTI scans of a patient to classify the stage of AD it belongs to. The

stages are Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impair-

ment (LMCI), AD and Normal Control (CN), i.e., healthy patient. This is the first

work that attempts classification into four classes simultaneously. Separate Convo-

lutional Neural Networks are trained on DTI-derived values, and a Random Forest

Classifier (RFC) is trained on average values for each brain region. The combined

method achieved a 92.6% classification accuracy on the ADNI database, demonstrat-

ing the efficacy of this approach. Next, we focused on hippocampus segmentation,

crucial for diagnosing neurodegenerative diseases. The proposed method uses a 3D

Attention UNet combined with a Histogram of Oriented Gradients (HOG) based

loss function, capturing shape and structural details. Validated on public datasets,

the method outperformed several state-of-the-art techniques, demonstrating its ef-

fectiveness for accurate 3D hippocampus segmentation. We further refined this work

to segment subregions within the hippocampus. We present a novel deep graph cut

approach for hippocampus subfield segmentation, crucial for diagnosing neurodegen-

erative diseases. The method incorporates deep learned shape information into the

energy function of a graph cut and uses a modified α-β swap technique to improve

segmentation accuracy and execution time. The proposed method outperformed

several state-of-the-art techniques, achieving superior segmentation results. Overall,

this thesis demonstrates the potential of computer vision techniques to significantly

improve the diagnosis and treatment of brain disorders, offering valuable tools for

clinicians and researchers.
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Chapter 1

Introduction

This chapter provides an outline of the importance of neurological disorder detection

in the medical imaging community. In section 1.1, we discuss the motivation behind

this research work. Section 1.2 presents an overview of neurodegenrative diseases

and brain tumors. In section 1.3 we discuss the imaging modalities that we used

in our work. Section 1.4 gives an introductory overview about the basic theory and

concepts used in this work. We then present a brief overview and background about

the works we have done in section 1.5. We examine the research gaps in section 1.6.

This is followed by the organization of this thesis in section 1.7. We finally end this

chapter, highlighting our contributions in section 1.8

1.1 Prologue

Advances in neuroimaging and machine learning are transforming the landscape of

medical diagnostics, particularly in the realm of neurological disorders and brain

cancers. This thesis embarks on an ambitious journey to harness the power of

state-of-the-art deep learning techniques and innovative algorithmic approaches to

enhance the diagnosis and treatment of complex neurological disorders. From the

nuanced classification of Alzheimer’s Disease stages using sophisticated Diffusion

Tensor Imaging scans to pioneering loss functions for precise hippocampus segmen-

tation, this work delves into the intricate interplay between advanced imaging tech-

nologies and cutting-edge computational methods.

1



Chapter 1 Introduction

Furthermore, the thesis introduces novel methodologies for 3D brain tumor seg-

mentation by fusing graph cut and deep learning techniques, and explores multi-

modal classification models that significantly elevate the accuracy of glioma diag-

nosis. By integrating genetic data with histopathological analysis, it also paves the

way for predictive models that offer deeper insights into glioma biomarkers, aiming

to tailor treatment strategies more effectively.

Through comprehensive experimentation and validation on public datasets, the

research presented here not only pushes the boundaries of current diagnostic capa-

bilities but also sets the stage for future innovations in computer-aided diagnosis in

neurological disorders. This thesis is a testament to the potential of interdisciplinary

approaches in tackling some of the most challenging problems in medical science,

promising to inspire further advancements and applications in the field.

1.2 Neurological Disorders

Neurological disorders encompass a wide range of conditions that affect the brain,

spinal cord, and nerves. These disorders can have significant impacts on cognitive,

motor, and sensory functions. This chapter focuses on brain tumors and brain can-

cers, followed by a discussion on neurodegenerative diseases like Alzheimer’s Disease

and brain structures affected by it. Understanding the pathology, symptoms, and

current treatment options for these conditions are crucial for advancing medical re-

search and improving patient care. We first discuss brain tumors and brain cancers

and how computer-aided intervention and improve the diagnosis and treatment pro-

cess. Brain tumors and brain cancers are critical conditions that arise from abnormal

growths within the brain. They can be benign or malignant, with varying degrees

of severity and treatment challenges. Understanding their pathology, symptoms,

and management is vital for improving patient outcomes and advancing therapeutic

strategies. The following sections discuss brain tumors and brain cancers in detail.
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1.2.1 Brain Tumors

Brain tumors are abnormal growths of cells within the brain or central spinal canal,

as shown in Fig. 1.1. They can be benign (non-cancerous) or malignant (cancerous).

Approximately 700,000 people in the United States are living with primary brain

tumors, with about 85,000 new cases diagnosed each year [11]. Brain tumors can

originate from brain cells, nerve cells, meninges, or metastasize from other parts

of the body. The exact cause of brain tumors is often unknown, but genetic and

environmental factors may play a role. Symptoms depend on the tumor’s size, type,

and location. Common signs include headaches, seizures, cognitive or personality

changes, and motor or sensory deficits. Diagnosis is made using neuroimaging tech-

niques such as MRI and CT scans, along with biopsy procedures to determine the

tumor’s histology. Treatment can be complicated by the tumor’s location and its

potential impact on critical brain functions. Recurrence is common, and complete

resection may not always be possible. Computer vision can assist in the precise

delineation of tumor boundaries in neuroimaging, aiding in surgical planning and

radiation therapy. Machine learning algorithms can analyze imaging data to dif-

ferentiate between tumor types and predict growth patterns, improving treatment

planning and monitoring.

Figure 1.1: MRI image of an axial slice of brain showing the tumor mass as a bright
irregular structure
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(a) Cellular image of
astrocytoma

(b) Cellular image of
oligodendroglioma

(c) Cellular image of
glioblastoma multiforme

Figure 1.2: Different types of glioma tumors as seen from a histopathological image

1.2.2 Brain Cancers

Brain cancers are malignant tumors that originate in the brain (primary brain can-

cers) or spread to the brain from other body parts (metastatic brain cancers). Among

primary brain cancers, gliomas are the most common and aggressive type, necessi-

tating significant focus and research due to their complex nature and poor prognosis.

Gliomas are a diverse group of tumors originating from glial cells in the brain. About

30% of all brain and central nervous system tumors are gliomas. Furthermore, 80%

of all malignant brain tumors are also gliomas [12]. The most notable subtypes

include:

• Astrocytomas: Originating from a type of glial cells in brain called astro-

cytes, these tumors range from low-grade (pilocytic astrocytoma) to high-grade

(glioblastoma multiforme).

• Oligodendrogliomas: Derived from oligodendrocytes (a type of glial cells in

brain), these tumors often have better prognoses than astrocytomas.

• Glioblastomas: The most aggressive subtype, characterized by rapid growth

and resistance to traditional therapies, with a median overall survival of ap-

proximately 15 months [13].

Histopathology images of the above subtypes are shown in Fig. 1.2, where we can

see the cellular structures of the different glioma subtypes. Focusing on gliomas,

particularly glioblastomas, is critical due to their aggressive nature, high mortality

rates, and the complexity of their treatment. Despite advances in surgical techniques,

radiation therapy, and chemotherapy, the prognosis for glioblastoma remains poor,
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with approximately 15 months of survival time post-diagnosis. Gliomas represent

about 44.6% of all brain tumors in children and adolescents, emphasizing the need

for focused research and improved therapeutic strategies [12].

Recent research highlights the importance of genetic biomarkers and mutations

in the diagnosis and treatment of gliomas:

• IDH1/IDH2 Mutations: Common in lower-grade gliomas, these mutations are

associated with better prognosis and responsiveness to certain therapies [14].

• MGMT Promoter Methylation: The methylation status of the MGMT gene

promoter can predict the response to alkylating agents like temozolomide [15].

• 1p/19q Co-deletion: This chromosomal deletion is characteristic of oligoden-

drogliomas and is associated with a favorable response to therapy and improved

survival rates [16].

• TERT Promoter Mutations: These mutations are often found in glioblastomas

and are associated with poorer prognosis [17].

Understanding these genetic alterations allows for the development of targeted thera-

pies and personalized treatment plans, improving outcomes for patients with gliomas.

Computer vision techniques play a pivotal role in the detection, diagnosis, and

treatment planning of gliomas. Machine learning algorithms can analyze MRI and

CT scans to accurately segment tumors, differentiate between tumor types, and

assess tumor progression. This technique involves extracting large amounts of quan-

titative features from medical images, which can be used to predict tumor behavior,

treatment response, and patient outcomes. Deep learning models can integrate imag-

ing data with genetic and clinical information to predict prognosis and guide treat-

ment decisions. Augmented reality and computer-assisted navigation systems can

help neurosurgeons precisely locate and resect tumors while preserving critical brain

functions [18]. The integration of genetic insights and computer vision techniques

holds significant promise in enhancing the diagnosis, treatment, and management of

glioma tumors. Ongoing research and interdisciplinary collaboration are essential to

further improve outcomes for patients with these challenging brain cancers.
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Figure 1.3: Difference between a healthy brain and a brain having Alzheimer’s
Disease. [1]

We now shift our focus to the Alzheimer’s Disease, a prominent neurodegenrative

disease. In this context, we also discuss Hippocampus, a structure in the brain, which

is often found to be affected by the Alzheimer’s Disease, as well as other diseases,

such as, Epilepsy.

1.2.3 Alzheimer’s Disease

Alzheimer’s Disease (AD) accounts for 60-80% of dementia cases worldwide. Demen-

tia is a broad term used to describe a decline in the cognitive function severe enough

to interfere with daily life. Alzheimer’s Disease leads to progressive degeneration of

brain cells, significantly impacting cognitive abilities and memory [19].

Approximately 55 million people worldwide have Alzheimer’s disease, a number

expected to double every 20 years. By 2050, it is projected that 139 million people

will be living with Alzheimer’s [20]. The global cost of dementia, largely driven by

Alzheimer’s, is estimated to be over $1.3 trillion annually, projected to rise to $2.8

trillion by 2030 [21].

Alzheimer’s disease is marked by the accumulation of amyloid-beta plaques and

tau tangles in the brain, as shown in Fig. 1.3. These deposits disrupt cell communi-

cation and lead to cell death. The hippocampus, responsible for memory formation,
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is one of the first regions to be affected. The cortex, involved in thinking and

decision-making, also deteriorates as the disease progresses.

Early symptoms of Alzheimer’s include difficulty remembering recent events and

names. As the disease progresses, symptoms worsen to include severe memory loss,

disorientation, and significant changes in behavior and personality.

Diagnosis of Alzheimer’s involves clinical assessments, neuroimaging (such as

MRI and PET scans), and biomarker analysis in cerebrospinal fluid. Early and

accurate diagnosis is challenging but crucial for managing the disease.

Treatment options for Alzheimer’s are limited and primarily focus on slowing

disease progression rather than reversing or curing the condition. Current therapies

have variable efficacy, and there is a critical need for more effective treatments.

Computer vision can significantly aid in the detection and monitoring of

Alzheimer’s disease [22]. Advanced image processing techniques can quantify amy-

loid and tau load from PET scans, providing a more objective measure of disease

progression. Automated volumetric analysis of MRI scans can track atrophy in

specific brain regions, aiding in early diagnosis and treatment monitoring. These

technologies enhance early detection, potentially leading to better management and

outcomes for patients.

In summary, Alzheimer’s Disease, as the leading cause of dementia, poses sig-

nificant challenges in terms of diagnosis, treatment, and management. Advances in

computer vision and neuroimaging techniques offer promising avenues for improving

early detection and monitoring of this debilitating condition.

1.2.4 Disorders related to Hippocampus

The hippocampus is a crucial structure located within the medial temporal lobe of

the brain as shown in Fig. 1.4. It plays a significant role in the formation of new

memories, spatial navigation, and the consolidation of information from short-term

memory to long-term memory. Damage or dysfunction in the hippocampus is as-

sociated with several neurological and psychiatric conditions. Diseases affecting the

hippocampus include Alzheimer’s Disease, epilepsy, depression, and schizophrenia.
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Figure 1.4: Hippocampus inside the brain [2]

Each of these conditions can lead to significant cognitive and behavioral impair-

ments, highlighting the importance of the hippocampus in brain function [23].

Alzheimer’s Disease (AD) is the most well-known condition associated with hip-

pocampal damage. AD is characterized by the accumulation of amyloid-beta plaques

and tau tangles, leading to neurodegeneration in the hippocampus and other brain

regions. This degeneration results in progressive memory loss, disorientation, and

cognitive decline [24].

Over 50 million people worldwide are affected by epilepsy, making it one of the

most common neurological diseases globally [25]. Epilepsy, particularly temporal

lobe epilepsy (TLE), often involves the hippocampus. TLE is characterized by re-

current seizures originating in the temporal lobe, where the hippocampus is located.

These seizures can cause hippocampal sclerosis, a condition marked by neuronal

loss and gliosis (scarring) in the hippocampus. Patients with TLE often experience

memory deficits and spatial disorientation [26].

The hippocampus is highly susceptible to damage due to its unique structure

and function. In Alzheimer’s Disease, the accumulation of amyloid-beta plaques and

tau tangles disrupts neuronal communication and leads to cell death, particularly

affecting the hippocampus [24]. In epilepsy, recurrent seizures cause excitotoxicity,

leading to neuronal loss and gliosis in the hippocampus [26].

The symptoms associated with hippocampal damage vary depending on the spe-

cific disease but often include memory loss, disorientation, and cognitive impair-
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ments. In Alzheimer’s Disease, patients experience progressive memory decline and

difficulty with spatial navigation. In epilepsy, patients may have memory deficits

and confusion following seizures.

Diagnosing hippocampal-related diseases involves a combination of clinical as-

sessments, neuroimaging (such as MRI and PET scans), and neuropsychological

testing. Biomarker analysis in cerebrospinal fluid can also aid in diagnosing condi-

tions like Alzheimer’s Disease.

Despite available treatments, many patients continue to experience seizures.

Identifying the exact brain regions responsible for seizures can be difficult, mak-

ing targeted treatments challenging. Computer vision techniques can enhance the

segmentation of hippocampus and analyse the degree of damage by comparing it to

a healthy hippocampus through detailed analysis of neuroimaging data. Automated

analysis of MRI data can improve the accuracy of diagnosis and the identification

of seizure onset zones, potentially leading to more effective surgical interventions.

1.3 Image Modality

This section provides a comprehensive overview of the image modalities used in

the thesis, focusing on radiological and histopathological data. The radiological

data includes Diffusion Tensor Imaging and various Magnetic Resonance Imaging

techniques, while the histopathological data consists of H&E stained Whole Slide

Images of brain tissue. Each modality’s principles, features, capture methods, and

common file formats are discussed.

1.3.1 Radiological Data

(A) Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) is an advanced MRI technique that measures the

diffusion of water molecules in biological tissues. It is particularly effective for vi-

sualizing the orientation and integrity of white matter tracts in the brain. DTI is

captured using MRI scanners equipped with diffusion-sensitized gradients. These

gradients measure the diffusion of water in multiple directions, producing data that
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Figure 1.5: Axial FA map of a DTI scan

is processed to generate diffusion tensors, which describe the magnitude and direc-

tionality of diffusion [27]. DTI has the following features that are used in our work.

• Fractional Anisotropy: Measures the degree of anisotropy of water diffusion,

indicating the integrity of white matter tracts.

• Mean Diffusivity: Represents the average rate of water diffusion within

tissue, useful for identifying tissue abnormalities.

• Echo Planar Imaging: It is an MRI sequence that allows for the rapid

acquisition of images by capturing all spatial frequencies required for image

reconstruction following a single excitation pulse. The primary advantage of

EPI is its speed, making it suitable for applications where rapid imaging is

essential, such as DTI.

DTI data is typically stored in formats such as NIfTI (.nii, .nii.gz) or DICOM, which

support multi-dimensional data necessary for 3D imaging. An example DTI image

is shown in Fig. 1.5.
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(B) Magnetic Resonance Imaging (MRI)

MRI includes several techniques, each providing different tissue contrasts and infor-

mation.

T1 weighted Imaging T1-weighted images are produced by exploiting the differ-

ences in longitudinal relaxation times (T1) of tissues. This is achieved by applying

a radio frequency pulse and measuring the time it takes for protons to realign with

the magnetic field. T1-weighted images are captured using spin-echo sequences or

gradient-echo sequences on MRI scanners. T1 weighted images have the following

key features-

• High-resolution anatomical details: Excellent for visualizing the structure

of the brain.

• Contrast between different tissue types: Useful for identifying normal

and pathological structures.

T1-weighted images are commonly stored in DICOM format for clinical use and

NIfTI format for research purposes. T1-weighted MRI is crucial in detecting brain

parenchymal and meningeal abnormalities, enhancing the diagnostic accuracy in

clinical practice [28].

T2-weighted Imaging Principles and Capture Method: T2-weighted images

highlight differences in transverse relaxation times (T2), where tissues with high

water content appear bright. These images are captured using spin-echo or fast

spin-echo sequences on MRI scanners. The important features of T2 imaging are

specified below-

• High sensitivity to fluid content: Effective for detecting edema, inflam-

mation, and other fluid-related abnormalities.

• Clear differentiation between gray and white matter: Useful for iden-

tifying lesions and structural abnormalities.
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T2-weighted images are also typically stored in DICOM and NIfTI formats. T2-

weighted MRI has been shown to be effective in differentiating high-grade gliomas

from metastases, providing valuable diagnostic information [29].

T1 Contrast-Enhanced Imaging This technique involves the use of gadolinium-

based contrast agents to enhance the visibility of certain structures or abnormalities

by shortening the T1 relaxation time of tissues. Images are captured using spin-echo

or gradient-echo sequences post-contrast administration. The noteworthy character-

istics of T1 Contrast Enhanced Imaging are given below-

• Enhanced contrast between normal and pathological tissues: Im-

proves detection and characterization of tumors, vascular abnormalities, and

inflammation.

• Dynamic imaging capabilities: Useful for assessing blood-brain barrier

integrity and perfusion.

Contrast-enhanced images are stored in DICOM and NIfTI formats. Enhanced T1

imaging has proven superior in identifying abnormalities in brain parenchymal and

meningeal diseases [28].

T2 - FLAIR (Fluid-Attenuated Inversion Recovery) Principles and Cap-

ture Method: T2-FLAIR imaging suppresses the signal from cerebrospinal fluid,

making it easier to detect lesions near fluid-filled spaces. This is achieved by ap-

plying an inversion recovery pulse before the standard T2-weighted sequence. The

characteristics of T2-FLAIR is mentioned below-

• Suppression of CSF signal: Enhances the visibility of lesions in the periven-

tricular region and around the brain’s fluid spaces.

• High sensitivity to white matter lesions: Useful for diagnosing multiple

sclerosis, epilepsy, and other conditions involving white matter abnormalities.

T2-FLAIR images are typically stored in DICOM and NIfTI formats. T2-FLAIR

imaging provides significant diagnostic benefits in detecting meningeal lesions and

12



Chapter 1 Introduction

Figure 1.6: Axial view of T1, T1-contrast enhanced, T2 and T2-Flair scans. [3]

differentiating between various brain pathologies [30]. An example slice image of the

different types of MRI images discussed above are shown in Fig. 1.6.

1.3.2 Histopathological Data

(A) H&E Stained Whole Slide Images (WSI)

Hematoxylin and Eosin (H&E) staining is a routine technique in histopathology

that provides detailed visualization of tissue architecture [31]. Hematoxylin stains

cell nuclei blue, while eosin stains the extracellular matrix and cytoplasm pink. WSIs

are created by scanning stained glass slides at high resolution using digital pathology

scanners, which capture the entire tissue section in a digital format The key features

of this image modality are as follows-

• Detailed tissue architecture: Provides a comprehensive view of tissue mor-

phology, essential for diagnosing various diseases.

• High-resolution imaging: Allows for detailed examination of cellular and

tissue structures. See Fig. 1.7 for reference.

WSIs are commonly stored in formats such as .svs, .ndpi, .tiff, and .vms, which

support high-resolution and large file sizes necessary for detailed pathology images.
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Figure 1.7: Whole slide image of a tumor tissue. H&E stain. The whole
slide image (top) is substantially reduced in size digitally from the original scan,
but a sample (bottom) is shown at near original resolution. Image courtesy:
https://picryl.com/media/whole-slide-image-of-wilms-tumor-974458

1.4 Basic Theory and Concepts

In this section, the theoretical foundations and key concepts in computer vision,

machine learning, and deep learning, integral to the research work carried out in the

thesis, are presented.

We first discuss classical computer vision models, focusing on graph cuts. We

explore the graph cut method for image segmentation, delving into fundamental

concepts like min-cut/max-flow problems, modifying energy functions with data

and smoothness terms, and the critical role of seeding in segmentation accuracy. We

also discuss extensions to multi-class problems, focusing on algorithms like alpha-

expansion and alpha-beta swap for handling multiple labels, and illustrate their

applications in various vision tasks. We have used graph cuts in more than one of

our works. For brain tumor segmentation, we used graph cuts to complement the

drawbacks of deep learning architecture called U-Net. For Hippocampus segmenta-

tion, we used multi-class graph cuts to achieve fine grained multi-class segmentation.

Next, we briefly discuss about the machine learning models we used in our work,
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particularly the Random Forest algorithm. The ensemble learning approach, where

multiple decision trees are built on random data subsets, and predictions are aggre-

gated for improved accuracy, is used in our work on Alzheimer’s Disease stage clas-

sification. The Random Forest’s working mechanism, advantages such as handling

high-dimensional data and preventing overfitting, and its applications in different

industries like healthcare and finance makes it a good classifier for handling multiple

feature based data in our work.

We then discuss about deep learning models used in our work. Prominent CNN

architectures that we used are:

• DenseNet: Known for its dense connectivity, reducing the vanishing gradient

problem and improving feature reuse. We used this as a deep feature extractor

for histopathological images in our work on brain tumor classification [32].

• U-Net: Designed for biomedical image segmentation, notable for its symmet-

ric U-shaped structure and skip connections for precise localization [33]. We

used UNet and its variants in multiple works like Brain tumor segmentation,

Hippocampus segmentation and multi-class Hippocampus segmentation.

Finally, the thesis introduces graph-based neural networks, particularly Graph Con-

volutional Networks (GCNs) [34], which is like the extension of traditional neural

networks to handle graph-structured data by redefining the convolution operation

for nodes and their connections. We have used GCNs in brain tumor classification

tasks and was able to achieve state of the art results with it.

The details of each model and algorithm used in the thesis is explained in detail

in Chapter 2 with visual illustrations and captivating descriptions along with the

mathematical foundations.

1.5 Brief Overview

This section gives a broad overview on the related works of various neurological

disorder detection and analysis problems addressed in this thesis.
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1.5.1 Brain Tumor Segmentation

Brain tumor segmentation methods can be broadly classified into three groups,

namely, Without Learning, Supervised Learning, and Unsupervised Learning meth-

ods.

(A) Methods Without Learning

Some examples of this class are - thresholding and region growing techniques.

Thresholding Thresholding is a simple, fast technique that converts a scalar im-

age into a binary image based on a threshold value, separating foreground and

background regions. The threshold value is iteratively updated based on the mean

intensities of the partitioned regions until it converges [35, 36].

Region Growing Region growing initializes with a seed point and groups neigh-

boring pixels with similar properties to form regions. This method is computation-

ally simple but sensitive to seed initialization and noise [37].

(B) Supervised Learning Methods

Supervised methods use labeled training data to build models that classify pixels

during testing. These methods include clustering algorithms and machine learning

techniques, like, Support Vector Machines (SVM) and Artificial Neural Networks

(ANN) [38].

Artificial Neural Networks (ANN) Artificial Neural Networks (ANNs) mimic

the behavior of biological neurons, processing input signals and transmitting them

through multiple hidden layers to produce a final output. The output of each artifi-

cial neuron is a non-linear function of the sum of its inputs, and the network learns

by adjusting the weights of the connections between neurons to minimize errors [39].

Convolutional Neural Networks (CNNs) Convolutional Neural Networks

(CNNs) are a type of ANN specifically designed for processing structured grid
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data like images. CNNs automatically detect and learn features from input im-

ages through differnet types of layers. Detailed explanation of CNNs can be found

in Chapter 2.

Deep Neural Networks (DNNs) Deep Neural Networks (DNNs) extend the

concept of ANNs by adding more hidden layers, allowing them to model more

complex functions. However, DNNs require a large amount of training data and

substantial computational resources, which can be a limitation in medical imaging

applications [40,41]. More details on DNN is provided in Chapter 2

(C) Unsupervised Learning Methods

Unsupervised methods do not require labeled training data. They automatically

group pixels into clusters based on image features like intensity and texture. Tech-

niques include k-means clustering and Active Contour Models (ACM) [42].

Hybrid Techniques Hybrid techniques combine multiple methods to leverage

their respective advantages. Examples include integrating Fuzzy C-means (FCM)

with SVM for improved classification accuracy [43].

k-Means Clustering k-means clustering partitions image data into k clusters,

iteratively updating cluster means to minimize within-cluster variance. This method

is efficient but may not always converge to the optimal solution [44].

Active Contour Models (ACM) ACMs are deformable models that evolve to

match object boundaries based on image gradients and external forces. They can

handle significant variability but require good initialization and can be computa-

tionally intensive [45].

Combining Methods Combining methods like FCM and SVM provides accu-

rate classification and efficient segmentation by balancing sensitivity to noise and

preserving image information [46].
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1.5.2 Brain Tumor Detection and Classification

Brain tumor classification using MR images is a challenging and essential task in

medical image analysis. Various methods have been developed over the years to

enhance the accuracy and efficiency of brain tumor classification.

(A) Traditional Machine Learning Methods

Preprocessing, feature extraction, feature selection, dimension reduction, and clas-

sification are typical phases in machine learning approaches for classification. Since

the feature extraction stage frequently requires specialist knowledge, it might be

difficult for non-experts to use these techniques efficiently. Two types of features

can be extracted: high-level (local) features like Bag-of-Words (BoW), Fisher Vector

(FV), and Scale-Invariant Feature Transform (SIFT) and low-level (global) features

like intensity and texture characteristics. [47], [48], [49].

(B) Deep Learning Methods

The advent of deep learning has significantly transformed the landscape of medical

image classification. CNNs are particularly successful due to their ability to learn

feature representations directly from the data, bypassing the need for manual feature

extraction. Deep learning approaches do not require handcrafted features and can

automatically generate powerful discriminating features using a hierarchical learning

approach. This capability makes CNNs highly effective in capturing both low-level

and high-level features from MR images [50–54].

To address the limitations posed by small datasets, transfer learning has emerged

as a viable solution. Transfer learning involves using a pre-trained CNN model on a

large dataset and fine-tuning it for the specific task at hand. This approach leverages

the knowledge learned from natural images and adapts it to medical images, thus

improving performance even with limited data. Studies have shown that fine-tuning

pre-trained models like VGG19 can significantly enhance classification performance

for brain tumor MR images [55–57].
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1.5.3 Genetic Biomarker Detection

Biomarker detection is crucial for the diagnosis, prognosis, and treatment of var-

ious diseases, especially brain cancer. Recent advances in machine learning (ML)

and deep learning (DL) have significantly enhanced the ability to identify relevant

biomarkers from complex datasets. Although not much work in this direction with

regards to brain tumor, we discuss some works done for other diseases along with the

works done for brain tumor bio markers that can help provide the basic background

and motivation for this type of research.

We now discuss the works categorising it into three types of bio markers - diag-

nostic, prognostic and predictive.

(A) Diagnostic Biomarkers

Diagnostic biomarkers are essential for confirming the presence of a disease and

distinguishing between different subtypes of cancer. ITIH5 and DKK3 were found

to be probable biomarkers with a precision of 93% by Kloten et al. pursuing promoter

methylation of seven putative tumour suppressor genes in breast cancer [58]. Using

LASSO, Chi-Squared, and Information Gain approaches for feature selection and RF

and SVM for classification, Rehman et al. employed machine learning algorithms to

validate the significance of miRNAs as breast cancer biomarkers [59].

(B) Prognostic Biomarkers

Prognostic biomarkers forecast patient outcomes and illness recurrence. Using clin-

ical and RNA-seq data from the TCGA portal, Ma et al. developed ML methods

to uncover 16 gene prognostic markers for lung adenocarcinoma (LUAD), and they

validated their findings with GEO datasets [60]. In order to find prognostic small

nucleolar RNAs (snoRNAs), Xing et al. employed survival-related Cox regression

analysis models [61]. They chose candidates using LASSO regression and validated

using multivariate Cox proportional hazard models. Wong et al. applied a deep

multilayer perceptron network to identify prognostic genes for glioblastoma (GBM),

achieving significant results in survival analysis [62].
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(C) Predictive Biomarkers

Predictive biomarkers help classify individuals likely to respond to specific treat-

ments. Nam et al. developed the Gene Ranker method to identify predictive mark-

ers from gene expression data, integrating networks using WGCNA and generating

scores for genes such as OTC, B3GNT9, and Clorf167 [63]. Zhao et al. introduced

a graph convolutional network (GCN) to prioritize protein-coding genes using lncR-

NAs datasets, achieving high accuracy in AUC and AUPR values [64]. Zhang et al.

proposed a network-based deep learning approach for gene prioritization, construct-

ing a human molecular interaction network and training it with GNN to identify key

genes [65].

Biomarker detection in brain tumors has gained significant attention due to its

potential to improve diagnosis and treatment. Yan et al. used a deep learning ap-

proach to identify glioblastoma biomarkers from MRI data, achieving high accuracy

in distinguishing tumor subtypes [66]. Li et al. developed a machine learning model

that integrates genomic and clinical data to predict patient outcomes in glioma,

identifying key biomarkers such as IDH1 and MGMT [67]. Chen et al. applied

a convolutional neural network (CNN) to RNA-seq data to discover biomarkers

for brain metastases, demonstrating the method’s potential in clinical settings [68].

Furthermore, recent studies have highlighted the use of liquid biopsies, where circu-

lating tumor DNA (ctDNA) and extracellular vesicles (EVs) are analyzed using ML

techniques to identify brain tumor-specific biomarkers [69].

1.5.4 Alzheimer’s Disease Stage classification

Recently, there are more reports on detecting Alzheimer’s Disease by using MRI

data and machine learning (ML) techniques and Deep Learning (DL) Techniques.

We first discuss the ML techniques used, followed by DL techniques.

(A) Traditional Machine Learning Techniques

Early studies applying machine learning (ML) to Alzheimer’s Disease (AD) focused

on traditional algorithms such as Decision Trees (DT), Support Vector Machines
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(SVM), Näıve Bayes (NB), and k-nearest neighbors (k-NN). These methods used

manually selected linguistic features from radiological data. For instance, Guinn

et al. compared DT, SVM, and k-NN on conversational samples [70]. Orimaye

et al. evaluated DT, NB, SVM with radial basis function, and neural networks,

concluding that SVM performed best [71]. Yancheva et al. applied random forest

(RF) classifiers using automatically extracted semantic features [72]. Decision Trees

(DT) are a non-parametric supervised learning method used for classification and

regression. They create a model that predicts the value of a target variable by

learning simple decision rules inferred from the data features [73]. Breiman et al.

used Random Forest (RF), which is an ensemble learning method for classification

and regression that operates by constructing a multitude of decision trees at training

time and outputting the class that is the mode of the classes or mean prediction of

the individual trees [74].

(B) Deep Learning Techniques

Recent advancements in neural networks have significantly enhanced Alzheimer’s

Disease (AD) classification. Orimaye et al. used a deep-deep neural network lan-

guage model (D2NNLM) with high-order n-gram features to distinguish between

AD and control samples [75]. Karlekar et al. applied convolutional neural networks

(CNN), long short-term memory (LSTM) networks, and hybrid CNN-LSTM models

for the same task. These results indicate that neural networks outperform tradi-

tional ML algorithms in AD classification due to their ability to automatically learn

complex patterns from large datasets.

1.5.5 Hippocampus Segmentation

Hippocampus segmentation has been a critical area of research due to its implica-

tions in diagnosing and understanding various brain diseases, such as Alzheimer’s

disease, temporal lobe epilepsy, and schizophrenia. Traditionally, segmentation

methods have been categorized into manual, semiautomatic, and fully-automated

approaches. Manual segmentation is the gold standard, but is labor-intensive and
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time-consuming. Semiautomatic methods require user interaction, whereas fully-

automated methods aim to eliminate this need. We discuss below four different

categories of segmentation approaches.

(A) Atlas-Based Segmentation

Atlas-based segmentation methods are quite popular. By lining up the target im-

age and the labelled atlas image, Fischl et al. [76] were able to segment different

brain areas. Multi-atlas-based techniques have been developed as a response to the

shortcomings of single atlas registration. These approaches entail registering each

atlas picture to the target image and then combining all propagating atlas labels to

produce the final segmentation result. Researchers have concentrated on enhancing

label fusion approaches and image registration procedures to improve multi-atlas

segmentation performance [77].

(B) Classification-Based Segmentation

Another approach is classification-based segmentation, where the segmentation task

is transformed into a pattern recognition problem. This method involves feature ex-

traction from the target image followed by the use of supervised learning algorithms

such as random forests and support vector machines (SVM) to build a classification

model. Researchers have introduced techniques like multi-scale and sparse represen-

tation to improve feature representation and classifier performance [78] [79].

(C) Deep Learning-Based Segmentation

Deep learning techniques have recently demonstrated better results in tasks involving

the segmentation of medical images. Particularly effective are Convolutional Neural

Networks (CNNs) and U-net designs. Hippocampal segmentation research has been

resurrected by U-Net [33], which has greatly increased segmentation speed and pre-

cision. Because deep neural networks can automatically learn complicated patterns

from vast datasets, studies have shown that they perform better than traditional

machine learning techniques [80].
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(D) Hybrid Approaches

A combination of classical and deep learning (DL) techniques can yield superior seg-

mentation performance compared to using DL or classical methods alone. Published

works, such as, [81] and [82] demonstrate this for lung nodule segmentation. In case

of 3D brain tumor segmentation [83], integrating UNet with graph cut addressed

the manual seeding issue of graph cut and the undersegmentation problem of UNet

caused by limited data.

1.6 Research Gaps

This section highlights the existing research gaps in the specific problem domains

addressed in this thesis. These gaps reveal the importance of the problems we aim

to solve.

1.6.1 Brain Tumor Segmentation

Despite the advancements in brain tumor segmentation methods, several research

gaps persist that limit the efficacy and generalization of these techniques in clinical

applications.

Firstly, classical methods like thresholding and region growing, while tend to

be computationally efficient and simple, suffer from significant limitations. These

methods are highly sensitive to initial conditions, such as, seed selection in region

growing and threshold values in thresholding. They also struggle with segmenting

tumors that have irregular shapes, varying intensities, or that are located near com-

plex anatomical structures. The reliance on manually defined parameters makes

these methods less adaptable to the diverse range of tumors encountered in clinical

practice. Therefore, there is a need for more adaptive and robust methods that can

automatically adjust to different tumor characteristics.

Secondly, while supervised learning methods, particularly machine learning tech-

niques like SVM and ANN, have shown promise in improving segmentation accuracy,

they rely heavily on the availability of large, well-annotated datasets for training.
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The scarcity of such datasets in medical imaging, combined with the time-consuming

and subjective nature of manual annotation, poses a significant challenge. Hybrid

techniques that combine the strengths of both classical and deep learning approaches

show potential for improving segmentation accuracy and robustness. However, the

optimal integration of these methods remains an open research question. Some chal-

lenges in choosing and combining different methods includes understanding how to

balance the trade-offs between computational efficiency, segmentation accuracy, and

robustness to variations in tumor presentation.

Finally, a major gap in current research is the ability of segmentation methods to

handle particularly challenging cases, such as tumors with highly irregular shapes,

heterogeneous textures, or those adjacent to critical brain structures. Most existing

algorithms are designed for typical tumor appearances and may fail in these complex

scenarios. Therefore, developing more sophisticated algorithms that can effectively

segment such difficult cases is crucial.

Addressing these research gaps will be essential for advancing the field of brain

tumor segmentation and translating these methods into reliable tools for clinical

use, ultimately improving patient outcomes through more accurate diagnosis and

treatment planning.

1.6.2 Brain Tumor Detection and Classification

Despite the advancements in brain tumor classification using MR images, several

critical research gaps need to be addressed to improve the reliability and applicability

of these methods in clinical settings.

Firstly, traditional machine learning methods, while effective, often involve com-

plex preprocessing steps such as feature extraction, feature selection, and dimen-

sionality reduction. These steps require expert knowledge, making them difficult to

implement for non-experts in the field. Additionally, the reliance on handcrafted

features, whether low-level like intensity and texture or high-level, like BoW and

SIFT, can limit the adaptability of these methods to different datasets or imaging

conditions. The challenge lies in automating these processes or developing more
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generalized approaches that can perform well across a variety of imaging conditions

without the need for extensive manual intervention.

Secondly, deep learning methods, particularly CNNs, have shown considerable

promise in brain tumor classification due to their ability to learn features directly

from data. However, these methods face significant challenges related to overfitting,

especially when trained on small datasets. While CNNs excel at capturing both low-

level and high-level features, they often require extensive computational resources

and time for training, particularly as model architectures become more complex.

This can limit the accessibility of these methods, especially in resource-constrained

environments.

Another critical research gap is the underutilization of multimodal data in brain

tumor classification. Recent research has demonstrated that using multi-modal data

can induce complementary features that can be learned by deep learning models to

provide better classification accuracy [84]. We have explored the use of multi modal

data in our works.

Addressing these research gaps will be crucial for advancing the field of brain

tumor classification and ensuring that these methods can be effectively integrated

into clinical workflows, ultimately leading to better diagnosis, treatment planning,

and patient outcomes.

1.6.3 Genetic Biomarker Detection

Despite the promising advancements in biomarker detection for brain tumors, par-

ticularly through the integration of deep learning and machine learning techniques

with genetic and genomic data, several key research gaps persist.

Firstly, the identification of genetic mutations as biomarkers for brain tumors,

such as, IDH1 and MGMT in gliomas, has significantly advanced our understanding

of tumor subtypes and patient prognosis. However, most existing studies have pri-

marily focused on a limited set of well-known genetic mutations. There is a need for

more comprehensive investigations that explore a broader spectrum of genetic alter-

ations, including rare mutations and epigenetic modifications, which could provide
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additional prognostic and therapeutic insights.

Finally, the integration of multi-omics data (e.g., genomic, transcriptomic, and

proteomic data) with clinical data presents a powerful approach for biomarker dis-

covery, as demonstrated by Li et al. [67] in glioma prognosis. However, there are

challenges related to the standardization and harmonization of multi-omics data,

particularly when integrating datasets from different platforms or institutions. There

is a critical need for the development of robust computational frameworks and data-

sharing platforms that can effectively integrate and standardize multi-omics data,

enabling more reliable biomarker discovery.

1.6.4 Alzheimer’s Disease Stage classification

Despite the significant advancements in applying machine learning (ML) and deep

learning (DL) techniques for Alzheimer’s Disease (AD) stage classification, several

critical research gaps persist.

First, while much of the existing research has focused on classifying AD stages,

there is a notable lack of studies specifically targeting the early stages of the disease,

such as, early mild cognitive impairment (EMCI), and late mild cognitive impairment

(LMCI). Identifying these stages is crucial, as early intervention can significantly

slow the progression of AD. The difficulty in classifying these early stages stems

from the subtlety of symptoms and the overlap with normal aging processes, which

requires the development of more sensitive and specific models.

Second, most studies to date have focused on classifying AD stages in isolation,

typically distinguishing between binary stages such as AD vs. non-AD or MCI vs.

healthy controls. There is a significant gap in research that attempts to classify

multiple stages of AD simultaneously. Multi-stage classification is essential for a

detailed understanding of disease progression and could improve the precision of

interventions tailored to specific stages of AD.

Finally, while CNNs and LSTMs have been combined in hybrid models to cap-

italize on their respective strengths, the exploration of other hybrid or ensemble

techniques, particularly those that might integrate traditional ML methods with
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DL approaches, remains sparse. Such models could potentially improve classifica-

tion accuracy and generalization across different datasets.

Addressing these gaps could lead to significant advancements in the early de-

tection and stage-specific treatment of Alzheimer’s Disease, ultimately improving

patient outcomes.

1.6.5 Hippocampus Segmentation

Despite the progress in hippocampus segmentation techniques, several issues remain

unaddressed, limiting the potential of these methods in clinical applications.

Firstly, although atlas-based segmentation methods have been extensively stud-

ied, their performance is highly dependent on the quality of the image registration

and label fusion processes. The challenge arises in accurately aligning the atlas

images with target images, especially when there are significant anatomical varia-

tions among individuals. While multi-atlas strategies attempt to mitigate this by

incorporating multiple references, there is still a need for more robust and flexible

registration techniques that can handle diverse and complex brain structures. Addi-

tionally, the computational cost and time required for multi-atlas approaches remain

a concern, particularly in large-scale studies or real-time clinical settings.

Secondly, although deep learning-based segmentation methods, particularly

CNNs and U-Net architectures, have revolutionized the field by automating feature

learning and significantly improving segmentation accuracy, they are not without

limitations. One major challenge is the need for large, annotated datasets to train

these models effectively. Such large datasets are often unavailable in the field of

medical imaging because of privacy issues and the labor-intensive nature of human

annotation. The fact that deep learning models have a tendency to overfit on limited

datasets, which results in poor generalization on new data, exacerbates this prob-

lem. Furthermore, while deep learning models excel at capturing complex patterns,

they can sometimes struggle with the fine details necessary for precise hippocampus

segmentation, particularly in cases of subtle pathological changes.

Another research gap lies in the integration of classical and deep learning tech-
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niques. Although preliminary studies suggest that combining these methods can lead

to improved segmentation performance, the optimal way to fuse classical approaches

with deep learning remains an open question. For instance, while hybrid methods

like the integration of U-Net with graph cut techniques have shown promise, they

still face challenges such as balancing the strengths of each method and addressing

issues like under-segmentation and the need for manual intervention. Addressing

these gaps will be critical for advancing the accuracy, efficiency, and clinical utility

of hippocampus segmentation methods, ultimately improving diagnosis and treat-

ment planning for various neurological conditions.

1.7 Organization of Thesis

We organize the thesis in the following manner: In chapter 2 we have stated the

fundamental concepts and theoretical background of different models utilized in

solving different brain disorder problems. In chapter 3 we have addressed the issue

of 3D brain tumor segmentation using a synergism of classical and deep learned

techniques. In chapter 4 we have proposed a novel brain tumor classification using

multi modal data. In chapter 5, we designed a “multi-label” brain tumor bio marker

prediction framework using histopathology data. In chapter 6 we have provided a

detailed description of DTI based Alzheimer’s disease detection model. In chapter 7

we have proposed a “shape-driven” hippocampus segmentation framework using

radiology data and also extended this model to segment important sub regions inside

the hippocampus. In chapter 8, we finally conclude this thesis and discuss some of

the future directions of current neurological disorder problems with high practical

utility.

1.8 Contributions of the Thesis

In this thesis, we have five major contributions. We mostly decide upon the problems

in the domain of brain disorders after careful discussion with clinicians at the Insti-

tute of Neurosciences, Kolkata by considering factors like real-world challenges faced
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during patient analysis, treatment and diagnosis. We now present each contribution

in the following paragraphs.

Brain tumor segmentation is crucial for tumor diagnosis and surgical planning.

A common challenge encountered by radiologists and neurosurgeons is accurately

delineating the boundaries of a tumor when the abnormality is not well-defined

and spreads into the surrounding tissue. Neuro-radiologists desire a concise yet

precise method for identifying tumors that can expedite the preoperative diagnosis.

To tackle the challenge of effective 3D tumor segmentation, we propose a novel

approach to 3D brain tumor segmentation using a combination of deep learning and

graph cut techniques on MRI data. Specifically, probability maps generated by a

UNet model for classifying voxels as tumor or background are utilized to enhance

the graph cut energy function. We introduce new expressions for the data term,

region term, and weight factor that balance these terms for individual voxels in our

model, detailed description of which is available in Chapter 3. The performance of

our approach is validated using the BRATS 2018 dataset, demonstrating superior

segmentation accuracy compared to using graph cut or UNet independently, as well

as other state-of-the-art methods.

Histopathological classification of brain tumors relies on identifying specific

histopathological features unique to each tumor type. Accurate classification of

gliomas into astrocytoma, oligodendroglioma, and glioblastoma is crucial for patient

prognosis, treatment, and management. While microscopic examination is the gold

standard, it is subject to significant inter-observer variability. Machine learning al-

gorithms that utilize specific histopathological characteristics can help reduce this

variability by providing objective analysis. This work addresses brain tumor classi-

fication using both radiology and histopathology data through a coarse-to-fine ap-

proach combining deep learning and Graph Convolution Networks (GCNs). Initially,

a 3D CNN is employed to detect glioblastoma from MRI images. For distinguishing

astrocytoma and oligodendroglioma, Whole Slide Images (WSIs) are used in the sub-

sequent stage. During this fine classification phase, 2D CNN features are extracted at

two different magnification levels, constructing a graph with nodes as concatenated
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feature embeddings and edges determined by a Radial Basis Function (RBF) kernel.

The GCN, utilizing a normalized graph Laplacian, ensures improved relation-aware

representation, leading to more accurate classification. Our method demonstrates

state-of-the-art performance on the CPM-RadPath2020 challenge dataset. Please

see Chapter 4 for detailed explanation of the work.

Brain cancer has a very high mortality rate, with gliomas being the most com-

mon and deadly malignant brain tumors. Recent biological studies have shown

that a comprehensive analysis of biomarkers responsible for genetic mutations in

gliomas can lead to better prognosis and treatment plans for patients. We simulta-

neously predict five crucial genetic markers—IDH, 1p/19q codeletion status, ATRX,

MGMT, and TERT, using deep learning on Whole Slide Images. Our deep learning

solution features a novel composite loss function that combines individual, pairwise,

and group-wise traits of these biomarkers. Multi-label weighted cross-entropy loss

captures individual characteristics, a conditional probability loss models pairwise

behavior, and a spectral graph loss addresses group properties. Extensive experi-

ments and an ablation study demonstrate the effectiveness of our approach, achieving

state-of-the-art prediction performance as described in Chapter 5.

In order to detect early signs of Alzheimer’s disease and to monitor the disease

progression, automated classification of Alzheimer’s disease is essential. We perform

a novel task of directly classifying four different stages, namely, Alzheimer’s Dis-

ease, Healthy, Early Mild Cognitive Impairment (EMCI), and Late Mild Cognitive

Impairment (LMCI), using 3D DTI data. The DTI modality offers information re-

garding brain structure through measurements of Fractional Anisotropy (FA) and

Mean Diffusivity (MD), as well as Echo Planar Imaging (EPI) intensities. We train

CNNs, especially, VoxCNNs individually on different types of such data, like FA

values, MD values, and EPI intensities from 3D DTI scan volumes. Furthermore,

we input the mean FA and MD values for each specific brain region, which are calcu-

lated based on the Colin27 brain atlas, into a random forest classifier (RFC). These

four models, consisting of three separately trained VoxCNNs and one RFC, are used

independently to solve the four-class classification problem mentioned above. The
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individual classification findings are combined at the decision level using a modulated

rank averaging technique, resulting in a high classification accuracy. The proposed

technique has been convincingly demonstrated to be effective through comprehensive

experimentation on the publicly available ADNI database and with state-of-the-art

comparisons, details of which is availalble in Chapter 6.

Hippocampus (HC) segmentation is crucial for diagnosing neurodegenerative dis-

eases such as Alzheimer’s, Parkinson’s, and common neurological disorders like

epilepsy. Studying HC atrophy can provide biomarkers and improve techniques

for detecting and predicting these illnesses, making segmentation vital in neuro-

radiology. While manual segmentation is highly accurate and considered the gold

standard, it is extremely time-consuming and labor-intensive. This has led to the

development of efficient automation techniques. In this work, we propose a 3D HC

segmentation solution from MRI data using a shape-driven loss function and atten-

tion UNet. We develop a Histogram of Oriented Gradients (HOG) based formulation

to extract shape features and suggest a pooling technique as an alternative to his-

togram calculation for HOG, please see Chapter 7 for the methodology in detials.

This addresses the issue of histograms being non-derivable, which makes error cal-

culation from histograms unsuitable for backpropagation in deep learning models.

Our model’s performance is validated on two publicly available datasets, HarP and

Kulaga-Yoskovitz (KY), demonstrating superior segmentation accuracy compared to

the attention UNet model with only Dice loss and other state-of-the-art approaches.

Examining the hippocampus (HC) subfields is crucial for detecting early signs

of brain abnormalities. However, segmenting these subfields is challenging due to

their complexity and the need for manually annotated high-resolution magnetic res-

onance images. Building on our previous HC segmentation work, we propose an

innovative deep graph cut approach, enhanced by shape information, for automatic

segmentation of HC subfields. Our method incorporates a deep-learned shape term

into the graph cut energy function. Additionally, we designed a modified α - β

swap technique that leverages deep learning to improve the execution time of the

multi-class segmentation algorithm. The detailed description of the work can be
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found in Chapter 7. Our solution outperforms several state-of-the-art methods on

the publicly available KY dataset.

To summarize our contributions, we highlight the main aspect of each contribu-

tion below-

1. We have developed a superior 3D brain tumor segmentation method by fusing

Graph Cut and Deep Learning techniques on MRI scans [83].

2. We have created an innovative multi-modal classification model for classifying

Glioblastoma, Astrocytoma, and Oligodendroglioma brain tumors with high

accuracy [85].

3. We have made predictions of glioma bio-markers using a model combining ge-

netic data with Whole Slide Images, targeting IDH, 1p/19q codeletion, ATRX,

TERT, and MGMT.

4. We have proposed a state-of-the-art classification model for simultaneously

classifying four stages of Alzheimer’s Disease using from DTI data [86].

5. We have constructed a novel loss function for deep learning-based hippocampus

segmentation [87] using MRI scans. We have further extended the solution to

multi-class, improving diagnosis and treatment of diseases like Alzheimer’s

Disease, Dementia, and Epilepsy.
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Chapter 2

Theoretical Foundations

This chapter explores classical computer vision models, machine learning models,

and deep learning models foundational to this thesis. Key concepts discussed include

graph cuts for image segmentation, the Random Forest algorithm, and advanced

neural network architectures such as Convolutional Neural Networks, DenseNet, and

UNet, along with graph-based neural networks like Graph Convolutional Networks.

2.1 Classical Computer Vision Models

We first discuss about some classical computer vision models used in this thesis.

2.1.1 Graph Cut

Firstly, we define the fundamental terminology used in this context. Consider a

graph G = ⟨V , E⟩, which comprises a set of nodes V and a set of directed edges E

connecting these nodes. The node set V = {s, t} ∪ P includes two distinguished

terminal nodes, namely the source s and the sink t, alongside a set of non-terminal

nodes denoted as P . Figure 2.1 presents a simple illustration of a graph containing

terminals s and t. Such N-dimensional grids are commonly utilized in vision and

graphics applications.

Each edge within the graph is associated with a non-negative weight or cost

w(p, q). The cost associated with a directed edge (p, q) may differ from that of the

reverse edge (q, p). An edge is termed a t-link if it connects a non-terminal node
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Figure 2.1: Graph construction for a 3× 3 image. The dotted line denotes a cut. [4]

in P with a terminal node. Conversely, an edge is termed an n-link if it connects

two non-terminal nodes. The collection of all (directed) n-links is represented by

N . The set of all edges E in the graph comprises the n-links in N and the t-links

{(s, p), (p, t)} for non-terminal nodes p ∈ P . As shown in Figure 2.1, the t-links are

the edges attached to the source S and the sink T, whereas, the n-links are the edges

connecting any two gray pixels.

(A) The Min-Cut and Max-Flow Problem

An s/t cut C (often simply referred to as a cut) is a partition of the graph’s nodes

into two disjoint subsets S and T such that the source s belongs to S and the sink

t belongs to T . Figure 2.1 illustrates an example of such a cut. The cost of a cut

C = {S, T } is determined by summing the weights of the “boundary” edges (p, q)

where p ∈ S and q ∈ T . When (p, q) is a boundary edge, it is sometimes stated that

the cut C severs the edge (p, q). The minimum cut problem seeks to identify a cut

with the minimum cost among all possible cuts.

A pivotal result in combinatorial optimization reveals that the minimum s/t

cut problem can be resolved by determining the maximum flow from the source s

to the sink t. Informally, the maximum flow represents the greatest “amount of

water” that can be transported from the source to the sink, with the graph edges

interpreted as directed “pipes” having capacities equivalent to edge weights. The

34



Chapter 2 Theoretical Foundations

Ford-Fulkerson theorem [88] asserts that a maximum flow from s to t saturates a

set of edges within the graph, thereby dividing the nodes into two disjoint subsets

{S, T } corresponding to a minimum cut. Consequently, the min-cut and max-flow

problems are equivalent, with the value of the maximum flow equating to the cost

of the minimum cut.

2.1.2 Graph Cuts for Solving the Max-Flow Min-Cut Prob-

lem

Graph cuts address the max-flow min-cut problem by constructing a flow network

and identifying the flow configuration that maximizes the flow from the source s to

the sink t.

(A) Energy Function in Graph Cuts

The energy function in graph cuts is typically used to formulate and solve segmenta-

tion problems. The energy function E(f) generally consists of two terms: the data

term and the smoothness term.

E(f) = Edata(f) + Esmooth(f) (2.1)

(B) Data Term:

The data term Edata(f) measures how well the labeling f fits the observed data. It

is often defined as:

Edata(f) =
∑
p∈P

Dp(fp) (2.2)

where Dp(fp) is the penalty for assigning label fp to pixel p.
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(C) Smoothness Term:

The smoothness term Esmooth(f) encourages spatially coherent labelings. It is typi-

cally defined as:

Esmooth(f) =
∑

(p,q)∈N

Vpq(fp, fq) (2.3)

where Vpq(fp, fq) is the penalty for assigning labels fp and fq to neighboring pixels

p and q.

(D) Seeding:

Seeding is a crucial step in graph cuts for image segmentation. It involves manually

or automatically marking certain pixels in the image as belonging to the foreground

(object of interest) or the background. These marked pixels are referred to as seeds

and is used to set the data term in the energy function more accurately. Pixels

marked as foreground seeds are strongly biased towards being labeled as the fore-

ground, and similarly, background seeds are biased towards being labeled as the

background. This is achieved by assigning very high or very low data penalties

Dp(fp) to these seeded pixels, ensuring they influence the segmentation result sig-

nificantly.

(E) Minimizing the energy

In image segmentation, the goal is to partition the image into regions that correspond

to different objects or textures. The graph cut method can be used to find an

optimal segmentation by minimizing the energy function defined above. By finding

the minimum cut, as shown in an example graph in Fig. 2.2, we can obtain the

optimal labeling f that minimizes the energy function E(f). This minimum cut

corresponds to the segmentation that best fits the data while maintaining spatial

coherence. The algorithm for graph cut is shown in Algorithm. 2.1.
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Algorithm 2.1: Graph Cut Algorithm

Input: Graph G = (V,E) where V is the set of vertices and E is the set of
edges.

Input: Source node s ∈ V and sink node t ∈ V .
Input: Energy function c : E → R+.
Output: A minimum cut (S, T ) that separates the source s and sink t.

1 Initialize S = {s} and T = V \ S;
2 while there exists an augmenting path P from s to t in the residual graph

Gf do
3 Find the augmenting path P using Breadth First Search (BFS);
4 Determine the bottleneck capacity ∆ = min{cf (u, v) | (u, v) ∈ P};
5 foreach edge (u, v) in the path P do
6 Subtract ∆ from the forward edge capacity: cf (u, v) = cf (u, v)−∆;
7 Add ∆ to the reverse edge capacity: cf (v, u) = cf (v, u) + ∆;

8 Identify the set S of all vertices reachable from s in the residual graph Gf ;
9 Let T = V \ S;

10 return The minimum cut is the set of edges (u, v) where u ∈ S and v ∈ T ;

Figure 2.2: An example of segmentation a 3× 3 image with graph cut. [5]
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Figure 2.3: Segmentation of the people and bell in the foreground from the back-
ground area using graph cut with seeding [6]

(F) Time Complexity

The time complexity of the graph cut algorithm using Ford-Fulkerson’s method

depends on the maximum flow in the network and the method used to find aug-

menting paths. In the worst case, Ford-Fulkerson’s algorithm has a time complexity

of O(E · f ∗), where E is the number of edges in the graph and f ∗ is the value of the

maximum flow. This is because the algorithm may require f ∗ iterations, each involv-

ing a depth-first search (DFS) or breadth-first search (BFS) to find an augmenting

path, which takes O(E) time. When using BFS (Edmonds-Karp implementation),

the complexity improves to O(V ·E2), where V is the number of vertices, as each aug-

menting path can be found in O(E) time and there are at most O(V ·E) augmenting

paths [88].

In summary, graph cuts provide a powerful framework for solving the max-flow

min-cut problem and optimizing energy functions for tasks such as image segmen-

tation. Fig. 2.3 shows an example of an actual image segmented into foreground

and background by using seeds. The combination of efficient algorithms, intuitive

geometric interpretations, and the ability to incorporate user-provided seeds makes

graph cuts a widely used tool in computer vision and graphics.
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2.1.3 Multilabel Graph Cuts

While the standard graph cut method is inherently binary, many real-world appli-

cations require labeling pixels with more than two labels. This is where multilabel

graph cuts come into play, extending the binary graph cut framework to handle

multiple labels effectively.

(A) Formulation of the Multilabel Problem:

Given a set of sites (pixels) P and a set of labels L where |L| > 2, the goal is to find

a labeling f : P → L that minimizes an energy function of the form:

E(f) =
∑
p∈P

Dp(fp) +
∑

(p,q)∈N

Vpq(fp, fq) (2.4)

where:

• Dp(fp) is the data cost for assigning label fp to pixel p.

• Vpq(fp, fq) is the smoothness cost for assigning labels fp and fq to neighboring

pixels p and q.

(B) Graph Construction for Multilabel Problems

The graph construction for multilabel problems involves creating additional nodes

and edges to accommodate multiple labels. One common approach is to use the

alpha-expansion and alpha-beta swap algorithms, which iteratively solve a series of

binary graph cut problems to approximate the multilabel solution.

α-Expansion technique The alpha-expansion algorithm iteratively improves the

labeling by allowing groups of pixels to change their label to a specified label α,

while keeping other labels fixed. This process is repeated for all labels α ∈ L until

convergence. The key idea is to solve the following binary problem at each iteration:

Eexp(f, α) =
∑
p∈P

Dp(fp) +
∑

(p,q)∈N

Vpq(fp, α) (2.5)
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Following is the algorithm for α expansion.

Algorithm 2.2: α - expansion algorithm

Input: Initial labeling f , set of labels L, energy function E(f).
Output: Final labeling f that minimizes the energy function.

1 Initialize with an arbitrary labeling f ;
2 Set success := 0;
3 repeat
4 foreach label α ∈ L do

5 Find f̂ = arg minf ′ E(f ′) among f ′ within one α-expansion of f ;

6 if E(f̂) < E(f) then

7 Set f := f̂ ;
8 Set success := 1;

9 until success = 0 ;
10 return Final labeling f ;

α-β Swap technique The alpha-beta swap algorithm improves the labeling by

considering pairs of labels α and β. It allows pixels labeled α to switch to β and

vice versa, aiming to find a better labeling configuration. The algorithm iteratively

solves binary problems of the form:

Eswap(f, α, β) =
∑
p∈P

Dp(fp) +
∑

(p,q)∈N

Vpq(fp, β) (2.6)

Following is the algorithm for the same-

(C) Energy Minimization

Both the alpha-expansion and alpha-beta swap algorithms rely on solving binary

subproblems using graph cuts. By iteratively applying these algorithms, it is possible

to approximate the global minimum of the multilabel energy function.

(D) Applications of Multilabel Graph Cuts:

Multilabel graph cuts are widely used in various computer vision tasks, such as

image segmentation, stereo vision, and texture synthesis. In image segmentation,

for example, each label may correspond to a different object or region in the image,
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Algorithm 2.3: α - β swap algorithm

Input: Initial labeling f , set of labels L, energy function E(f).
Output: Final labeling f that minimizes the energy function.

1 Initialize with an arbitrary labeling f ;
2 Set success := 0;
3 repeat
4 foreach pair of labels {α, β} ⊂ L do

5 Find f̂ = arg minf ′ E(f ′) among f ′ within one α− β swap of f ;

6 if E(f̂) < E(f) then

7 Set f := f̂ ;
8 Set success := 1;

9 until success = 0 ;
10 return Final labeling f ;

allowing for more complex and detailed segmentation results compared to binary

methods.

In summary, multilabel graph cuts extend the powerful binary graph cut frame-

work to handle multiple labels, providing effective solutions for complex labeling

problems in computer vision. By iteratively solving binary subproblems, multilabel

graph cuts achieve near-optimal results for various applications.

2.2 Machine Learning Models

Machine Learning (ML) is a subset of artificial intelligence (AI) focused on devel-

oping algorithms that enable computers to learn from and make decisions based on

data. ML models identify patterns and relationships within data, allowing them

to make predictions or decisions without explicit programming for specific tasks.

The advantages of ML include task automation, improved accuracy, scalability, and

adaptability to new and changing data. Its popularity has surged due to the in-

creased availability of data, advancements in algorithms, enhanced computational

power, and its versatility in application. ML is applied across various industries

such as healthcare for diagnosing diseases and personalizing treatments, finance for

fraud detection and risk management, retail for customer segmentation and demand

forecasting. We discuss a popular ML model that we used in our research work.
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2.2.1 Random Forest

Random Forest [89] is a highly regarded machine learning algorithm that utilizes su-

pervised learning techniques. It exhibits considerable versatility, making it suitable

for both classification and regression tasks. The algorithm is based on the concept

of ensemble learning, which combines multiple classifiers to tackle complex problems

and improve the overall performance of the model.

Fundamentally, a Random Forest consists of numerous decision trees, each of

which is trained on different subsets of the dataset. By averaging the predictions

generated by these individual trees, the algorithm enhances the accuracy of the

model. Rather than depending on a single decision tree, the Random Forest aggre-

gates the outcomes from all trees and determines the final output through a majority

vote of their predictions.

(A) Working of the Random Forest Algorithm

The Random Forest Algorithm operates in two primary phases: building the for-

est (comprising N decision trees) and making predictions using these trees. The

following steps outline this process:

1. Random Sampling: Randomly select M data points from the training set.

2. Tree Construction: Construct decision trees using these subsets of data.

3. Prediction: Each decision tree produces a prediction.

4. Aggregation: For classification, use majority voting; for regression, compute

the average of predictions.

For instance, consider a scenario where we have a dataset comprising multiple images

of various fruits. This dataset is provided to the Random Forest Classifier. Each

decision tree within the forest is assigned a subset of the dataset for analysis. During

the training phase, each decision tree produces a prediction outcome. When a new

data point is introduced, the Random Forest classifier determines the final prediction

by considering the majority of the outcomes generated by the individual trees. See

42



Chapter 2 Theoretical Foundations

Figure 2.4: Depiction of how the prediction of individual decision tree is used in
predicting the final label in a random forest

Fig. 2.4 for reference. The algorithm of random forest is given in Algorithm. 2.4.

Mathematically, a Random Forest is an ensemble of N decision trees, denoted as

{T1, T2, . . . , TN}. Given an input feature vector x, the final prediction ŷ is obtained

by aggregating the individual predictions of all decision trees:

ŷ = f(T1(x), T2(x), . . . , TN(x)) (2.7)

The aggregation function f(·) differs depending on the type of task:

Classification: For classification, the final prediction is determined by majority

voting among the predictions of the N trees. Specifically, the predicted class ŷ is

given by:

ŷ = arg max
k

N∑
i=1

I(Ti(x) = k) (2.8)

where: - k represents a possible class label. - Ti(x) is the class predicted by the

i-th decision tree for input x. - I(Ti(x) = k) is an indicator function that equals 1
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Algorithm 2.4: Random Forest Algorithm

Input: Training dataset D with n samples and m features, number of trees
N , number of features k to consider for splitting at each node.

Output: A random forest model consisting of N decision trees.
1 for i := 1 to N do
2 Generate a bootstrap sample Di from the training dataset D by

sampling with replacement;
3 Grow a decision tree Ti on Di as follows:

• while the stopping criterion is not met do
Randomly select k features from the m available features;

Choose the best split among the k features based on a criterion
(e.g., Gini impurity or information gain);

Split the node into two child nodes;

Add the tree Ti to the forest;

4 To make predictions on a new sample x:

• Aggregate the predictions from all the trees {T1, T2, . . . , TN} in the forest
(e.g., by majority vote for classification or averaging for regression);

return The aggregated prediction for the new sample;

if the i-th tree predicts class k, and 0 otherwise. - The class with the highest vote

count is selected as the final prediction.

Regression: For regression tasks, the final prediction is obtained by averaging the

outputs of all decision trees:

ŷ =
1

N

N∑
i=1

Ti(x) (2.9)

where: - Ti(x) is the numerical output predicted by the i-th tree for input x.

- The arithmetic mean ensures that the final prediction is a smoothed estimate,

reducing variance compared to individual tree predictions.

This ensemble approach helps improve model stability and generalization by

reducing overfitting, which is a common issue in single decision trees.

(B) Advantages of Random Forests

Random Forest Algorithm has the following advantages-
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• Diversity: Each tree is built using a different subset of features, ensuring

diversity.

• No Overfitting: Random Forests are less prone to over-fitting since they

aggregate results from multiple trees.

• Dimensionality: The algorithm effectively handles high-dimensional data by

considering only a subset of features for each tree.

• Parallelization: Trees are constructed independently, allowing for parallel

processing.

• Train-Test Split: There is no need for a separate train-test split as each tree

inherently samples different subsets of data.

• Stability: The algorithm provides stable predictions through majority voting

or averaging.

(C) Time complexity of Random Forests

The time complexity of Random Forest is given as-

Trfc = O(R · p · q · log(p)) (2.10)

where R is the number of trees, p is the number of samples, and q is the number of

features considered in each split.

Random Forest is a highly effective and versatile machine learning algorithm,

widely used across various industries for its robustness and accuracy. Despite its

complexity and longer training time compared to simpler models like decision trees,

it remains a popular choice due to its ability to handle diverse data types and provide

stable predictions.

2.2.2 Artificial Neural Networks

As the name suggest, the design of artificial neural networks (ANN) are inspired

from the structure of biological neurons of human brain. A normal human brain is
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approximately composed of around 85 billion neurons, which are responsible for con-

trolling human actions and behaviors. As shown in the figure 2.5 a neuron react to

other neurons to transmit information based on the membrane potential that gradu-

ally increases with the reception of some excitatory input. If the membrane potential

reaches a certain level over a specific threshold, an action potential is triggered that

propagates along the axon to the post-synaptic terminals. In a mathematical sense,

an artificial neuron is modeled as a function that first computes a weighted sum of

the input vector x based on weight vector w and offset by a bias term b. This result

is usually passed through a non-linear “activation function” as:

y = σ

(∑
i

wixi + b

)
= σ

(
wTx+ b

)
(2.11)

(A) Activation Functions

There are several activation functions as shown in figure 2.6. Initially, activations

are achieved through simple thresholding, but such models are difficult to train

due to non-derivable nature. Function similar to the nature of sigmoid function

like hyperbolic tangent or the logistic function are most commonly adopted for a

while before Rectified Linear Unit (ReLU) was introduced as activation function.

Each neuron performs simple computations but can result in complex output when

combined with several other neurons arranged in a specific pattern. Theoretically,

neurons can be organized quite arbitrarily, but usually they are arranged as directed

acyclic graphs, i.e., input to a neuron does not depend on its output. Such form

of arrangements are also widely known as “feed-forward” neural network as the

activations only propagates in forward direction.

(B) Multi-Layer Perceptrons (MLP)

The most popular feed-forward neural networks are multi-layer perceptrons (see

figure 2.7). A classic MLP contains one hidden and one output layer in addition

to an input layer. When each neuron in a layer is connected to all other neurons
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Figure 2.5: Biological Neuron Vs Artificial Neuron [7]

Figure 2.6: Different Neural Activation functions

47



Chapter 2 Theoretical Foundations

Figure 2.7: A typical illustration of a MLP

Figure 2.8: Illustration of back-propagation through a neuron.

in the preceding layer also known as fully connected layer (see 2.7). The basic idea

behind such design is that several simple elementary functions can be combined to

approximate a complex function simply by tuning the parameters of the network.

In this context, the universal approximation theorem [90] states that only a single

hidden layer based feed forward network consisting of a finite set of neurons can

approximate any continuous function under with assumption on activation function.

(C) Backpropagation

The backpropagation algorithm [91] is the most widely used approach for training

feed-forward neural networks. It is a specially designed version of gradient descent
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optimization in the context of updating/learning neural networks. The term “back-

propagation” used as an abbreviation of “backward propagation of errors”. During

neural training, backpropagation is followed immediately after computation of feed-

forward activations to compute the gradients of errors for updating the weights. Let

L be the loss/cost function computed between outputs and the desired targets for a

training sample batch (see figure 2.8). Let the gradient received by the neuron from

the preceding layer be represented by partial derivative ∂L/∂z. We further require

storing the local gradients (∂z/∂x and ∂z/∂y), activation (z) and inputs (x and

y) for each neuron in a memory for later calculations. These gradients are further

required to calculate gradients with respect to the inputs x and y as ∂L/∂x and

∂L/∂y respectively. Also, the gradient of loss L with respect to the weight w can

be computed as ∂L/∂w which can be further used to compute the updated weight

based on gradient descent given a learning rate α as:

∆w = −α∂L
∂w

(2.12)

A momentum term can also be further incorporated based on the weight of previous

update scaled by a factor η for faster convergence as

∆t = −α ∂L
∂wt

+ ηwt−1 (2.13)

Figure 2.9: Illustration of Convolutional Layer
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2.3 Deep Learning Models

Deep Neural Networks (DNNs) are a subset of ANNs with multiple layers between

the input and output layers. This architecture enables DNNs to learn complex data

patterns, surpassing the capabilities of traditional machine learning models. By

incrementally processing information through successive layers, DNNs can extract

increasingly abstract features. A prime example of this is the convolutional layer,

especially designed to process grid-like data such as images. This layer applies filters

to input data to extract essential features, laying the groundwork for advanced

computer vision tasks.

2.3.1 Convolutional Layer

A seminal breakthrough in the neurophysiology of the visual cortex emerged in 1962

with Hubel and Wiesel’s discovery of orientation selectivity and columnar organiza-

tion [92]. Employing microelectrode recordings from single neurons in the primary

visual cortex (V1) of anesthetized cats, they initially encountered challenges in elic-

iting responses to projected light and dark dots. Serendipitously, the slide projec-

tor’s margin induced neuronal activation, prompting further investigation with light

and dark bars of varying orientations. This led to the characterization of two cell

types: simple cells, exhibiting selective responses to specific bar orientations, and

complex cells, responding to a broader range of orientations while maintaining a

preference. Crucially, these cells were found to be hierarchically organized, receiving

input from simpler cells and constituting the foundational elements of visual pro-

cessing. Fukushima’s Neocognitron [93], a precursor to contemporary convolutional

neural networks, was directly inspired by the groundbreaking research of Hubel and

Wiesel. Working at the NHK Science & Technology Research Laboratories, Kuni-

hiko Fukushima translated the neurophysiological findings of simple and complex

cells into a multilayered neural network architecture. This pioneering work laid the

foundation for the development of artificial systems capable of processing visual in-

formation in a manner analogous to the mammalian visual cortex. An image usually

consists of several hundreds of pixels that needs to be processed in any computer
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vision task. Utilizing only fully-connected networks like MLP would exponentially

increase the number of parameters at the early stages of a neural network leading to

higher risk of overfitting. Convolutional layer was first to successfully address this

issues of MLP for images classification tasks also known as Convolutional neural

network (CNN). Instead of connecting every pixel of the input feature map to every

pixel of next hidden layer, a finite set of filter kernels are used to convolve over the

feature to obtain the next feature map. These kernels are of fixed size and also

require much less parameters than fully-connected layer. The two main aspects of a

CNN layer are a) local receptive fields where a hidden node is only connected to a

smaller region from previous layer and b) shared weights for all mappings between

local receptive field from previous layer with subsequent hidden node (see Fig. 2.9).

This two sets of restrictions dramatically reduce the required network parameters.

The convolution operation can be mathematically expressed as:

y = σ (W ∗X + b) (2.14)

where, X and W are the input and weight matrix respectively. Here, b is a bias

term with activation function σ and ∗ denotes discrete convolution operation. For

2D input image X, the convolution operation can be element-wise expressed as:

(W ∗X)(i, j) =
∑
m

∑
n

X(m,n)W (i−m, j − n) (2.15)

The output matrix of convolutional layer is obtained by sliding the weight matrix

W over the input X followed by a dot product (see Fig. 2.9). Here a learned weight

matrix W is composed of several filter kernels that fire up in response to a specific

feature in input X. This response may occur in form of edges, color or pattern that

mostly correlates with the filter characteristics. This filter kernels are automatically

learned during back propagation from the data itself during training.
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Time complexity of convolutional layer

The time complexity for convolutional layers is given by [94]-

Tconv =
d∑

n=1

kn−1 · s2n · fn · l2n · r1 · b1 (2.16)

where:

• d is the number of convolutional layers.

• ln is the length of the output feature map in the nth layer.

• fn is the number of filters in the nth layer.

• sn is the filter size in the nth layer.

• kn−1 is the number of input channels.

• r1 is the learning rate.

• b1 is the batch size.

For a convolutional layer in 3D, the time complexity can be written as-

T 3D
conv =

d∑
n=1

kn−1 · s3n · fn · l3n · r1 · b1 (2.17)

where symbols have their usual meanings as given in the above Eq. 2.16.

2.3.2 Fully Connected Layer

A Fully Connected (FC) layer is a fundamental component of deep learning mod-

els, particularly in feedforward neural networks and convolutional neural networks

(CNNs). In an FC layer, each neuron is connected to every neuron in the previous

layer, allowing the network to learn complex hierarchical representations. This layer

performs a linear transformation followed by a non-linear activation function, en-

abling the model to capture intricate patterns in data. Despite its effectiveness, fully

connected layers tend to have a large number of parameters, which can lead to high
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computational costs and overfitting, particularly when used with high-dimensional

input data. In modern deep learning architectures, FC layers are often used in

the final classification stage after feature extraction layers, such as convolutional or

recurrent layers, to aggregate learned features into class predictions [95].

Mathematically, a fully connected layer can be represented as follows: Given an

input vector x ∈ Rn, the output of the FC layer is computed as -

y = f(Wx+ b), (2.18)

where W ∈ Rm×n is the weight matrix, b ∈ Rm is the bias vector, and f is a non-

linear activation function (e.g., ReLU, Sigmoid, or Softmax). The weight matrix W

learns the mapping between input features and the output neurons, while the bias

vector b allows for additional flexibility in learning shifts in data distribution. During

training, these parameters are optimized using backpropagation and gradient descent

to minimize a chosen loss function. The computational complexity of an FC layer

is O(mn), making it expensive for large-scale models, which is why techniques like

weight sharing (CNNs) or sparsity-inducing methods (pruning) are used to improve

efficiency [95].

Time complexity of FC layer

The time complexity for a fully connected layer with 2D input is [94]-

Tfc =

f∑
l=1

C ·W ·H ·N (2.19)

where:

• f is the number of fully connected layers.

• C is the number of input channels.

• W is the width of the input.

• H is the height of the input.

• N is the number of neurons.
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The same for 3D input can be written as -

T 3D
fc =

f∑
l=1

C ·D ·W ·H ·N (2.20)

where D is the depth of input and the other symbols have their usual meanings as

given in Eq. 2.19.

2.3.3 Deep CNN Architectures

In this section, we discuss some popular CNN based deep neural networks that we

have used in our work. We specifically chose these networks to suit our particular

use-cases. For example, we have used a modified version of Alexnet in one of our

works (described in Chapter 6) for learning to classify MRI images. In another work

(Chapter 4), we had to extract deep features from images for which Densenet was a

suitable choice [96]. For segmentation tasks (as done in Chapters 7, 3), Unet is the

most popular deep learning model [97].

Figure 2.10: Architecture of Alexnet

(A) Alexnet

AlexNet [98] architecture gained much popularity by winning over ImageNet Large

Scale Visual Recognition Competition (ILSVRC) in 2012 for image classification.

The classification performance is achieved over a subset of ImageNet dataset con-

sisting over 15 million high-resolution labeled images with roughly 22,000 categories.

Out of these categories only 1000 categories are selected in the subset dataset and
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for each selected categories only 1000 images are selected. AlexNet with 5 convo-

lutional layer and 3 fully connected layer (see figure 2.10) have shown a significant

performance gain over traditional approaches. In Alexnet, ReLU is used as activa-

tion function which help tackle the vanishing gradient and over-fitting problem to

some extend which are persistent problem of sigmoid activation.

Figure 2.11: Architecture of DenseNet 121. Dx: Dense Block x. Tx: Transition
Block x.

(B) DenseNet

DenseNet [32] is a convolutional neural network (CNN) architecture that establishes

direct connections between each layer and all subsequent layers in a feed-forward

manner. Unlike conventional architectures, which have L connections (one between

each layer and the next), DenseNet features L(L+1)
2

direct connections. This unique

structure mitigates the vanishing-gradient problem, enhances feature propagation,

promotes feature reuse, and significantly reduces the number of parameters required.

In DenseNet, each layer receives as input the feature maps from all preceding layers

and transmits its own feature maps to all subsequent layers. DenseNet has been

demonstrated to require fewer parameters than traditional CNNs while maintaining

high performance on benchmark datasets. The architecture is composed of dense

blocks, each containing several convolutional layers, and transition layers, which

include batch normalization, convolution, and pooling layers that connect these

dense blocks, as depicted in Fig. 2.11. In our work, we have employed DenseNet-

121, where the dense blocks D1, D2, D3, and D4 consist of 6, 12, 24, and 16 layers,

respectively. DenseNet has achieved competitive results on highly challenging image
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Figure 2.12: Architecture of Unet

recognition tasks, underscoring its robustness and efficiency.

Using the equations described in Eq. 2.16 and Eq. 2.19, we can derive the time

complexity for a 2D DenseNet-121 model having 120 convolutional layers and 1 fully

connected layer as-

T 2D
D121 = T 2D

conv + T 2D
fc

=
120∑
n=1

kn−1 · s2n · fn · l2n · r1 · b1 + C ·D ·W ·H ·N
(2.21)

where symbols have their usual meaning defined in Sec. 2.3.1 and 2.3.2.

(C) UNet

UNet [33], a CNN architecture, is specifically developed for biomedical image seg-

mentation. It has garnered considerable recognition for its capability to deliver accu-

rate and efficient segmentations with a relatively small amount of training data. The

UNet architecture is characterized by its symmetrical design, comprising a contract-

ing path (encoder) and an expansive path (decoder), forming a U-shaped structure,

as illustrated in Figure 2.12.

The contracting path adheres to the conventional architecture of a convolutional
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network. It consists of the repeated application of two 3x3 convolutions (unpadded),

each followed by a rectified linear unit (ReLU) activation and a 2x2 max pooling

operation with a stride of 2 for downsampling. With each downsampling step, the

number of feature channels is doubled.

The expansive path, which is more intricate, is responsible for upsampling the

feature maps back to the original image size. It involves the upsampling of the

feature map, followed by a 2x2 convolution (referred to as ”up-convolution”) that

reduces the number of feature channels by half. This is then concatenated with the

corresponding cropped feature map from the contracting path, followed by two 3x3

convolutions, each succeeded by a ReLU activation. This symmetrical architecture

enables the network to effectively capture both contextual information and precise

localization.

A key feature of UNet is the skip connections that link the corresponding layers

of the contracting and expansive paths. These connections concatenate the feature

maps from the encoder to the decoder layers, ensuring that the detailed spatial infor-

mation is retained and used effectively during the upsampling process. This design

helps to preserve high-resolution features which are critical for precise segmentation

tasks.

UNet has been successfully applied to various image segmentation tasks in medi-

cal imaging, such as the segmentation of neuronal structures in electron microscopic

stacks, cell tracking in video microscopy, and many other applications requiring high

accuracy in pixel-level classification.

Time Complexity Analysis We first calculate the time complexity of the en-

coder path. Each convolutional layer in the encoder has a time complexity:

Tenc =
2L∑
n=1

kn−1 · s3n · fn · l3n · dn · r1 · b1 (2.22)

where L is the number of downsampling stages and the other symbols have their

usual meanings as described in 2.17 Similarly, the decoder consists of transposed

convolutions followed by standard convolutions. Hence, the time complexity of the
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decoder can be written as -

Tdec =
2L∑
n=1

kn−1 · s3n · fn · l3n · dn · r1 · b1 (2.23)

where L is the number of upsampling stages

The total time complexity of U-Net is given by-

TUNet = Tenc + Tdec

= 2
2L∑
n=1

kn−1 · s3n · fn · l3n · r1 · b1
(2.24)

Thus, the asymptotic complexity is-

TUNet = O

(
4L∑
n=1

kn−1 · s3n · fn · l3n · r1 · b1

)
(2.25)

2.4 Graph based neural networks

Graph-Based Neural Networks, such as Graph Neural Networks, extend traditional

neural networks to graph-structured data, enabling effective learning from relation-

ships and interactions between nodes. Applications include node classification, graph

classification, link prediction, and clustering, revolutionizing fields like social net-

work analysis and bioinformatics. We first discuss the types of tasks that can be

performed using Graph based Neural Networks.

2.4.1 Tasks

(A) Graph-Level tasks

Graph-level tasks involve predicting properties or labels associated with an entire

graph structure. For instance, given a molecular graph, the objective might be to

forecast its odor or its potential binding affinity to a disease-related receptor. This

problem is analogous to image classification tasks, such as those encountered in

MNIST and CIFAR datasets, where the goal is to assign a class label to a complete

image. Similarly, in natural language processing, sentiment analysis mirrors this
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concept, aiming to determine the overall sentiment of a sentence.

(B) Node-Level tasks

Node-level tasks pertain to the prediction of attributes or roles associated with

individual nodes within a graph structure. A canonical example is the Zachary’s

karate club dataset [99], a social network graph depicting members affiliated with

one of two karate clubs following a leadership dispute. Nodes represent individuals,

edges signify social interactions, and the task involves classifying members’ allegiance

to either of the two club leaders. Proximity to the respective leaders is a significant

predictor of this classification.

We have performed node level classification in our work as described in Chapter 4.

(C) Edge-Level tasks

Edge-level inference involves predicting relationships between entities within a graph.

In the context of image scene understanding, this translates to identifying connec-

tions between objects beyond simple object detection. By framing this as an edge-

level classification problem, deep learning models can be employed to determine

the existence or nature of relationships between image objects represented as graph

nodes. This approach enables the discovery of intricate dependencies between enti-

ties by constructing a fully connected graph and subsequently pruning edges based

on predicted relationship strengths. We discuss some basic concepts of Graph Neural

Networks below.

2.4.2 Graph Neural Networks

A Graph Neural Network (GNN) constitutes an optimizable transformation applied

to all graph attributes—nodes, edges, and global context—while preserving inher-

ent graph symmetries (permutation invariances). This study adopts the ”message

passing neural network” framework proposed by Gilmer et al. [100] and the Graph

Nets architecture outlined by Battaglia et al. [101]. GNNs operate on a ”graph-in,

graph-out” paradigm, accepting a graph as input with information encoded within
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its nodes, edges, and global context. These embeddings undergo iterative transfor-

mation without altering the graph’s underlying connectivity. A GNN layer comprises

independent multilayer perceptrons (MLPs) or equivalent differentiable models ap-

plied to each graph component: nodes, edges, and global context. The MLP pro-

cesses each node vector, generating a learned node embedding. Similarly, edge and

global context embeddings are learned. To enhance representational power, multiple

GNN layers can be stacked sequentially. As shown in 2.13, a graph is the input, and

each component (V,E,U) gets updated by a MLP to produce a new graph. Each

function subscript indicates a separate function for a different graph attribute at

the n-th layer of a GNN model. While the GNN does not modify the input graph’s

connectivity or number of feature vectors, it significantly updates the embedding

space. The output graph retains the same adjacency list but incorporates refined

node, edge, and global context embeddings resulting from the GNN’s transformation

process.

2.4.3 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) [34] are a type of neural network designed

to operate on graph-structured data. Traditional neural networks and convolutional

neural networks (CNNs) are typically designed for data that reside on regular grids,

such as sequences (1D) or images (2D). However, many real-world data sets, such

as social networks, biological networks, and knowledge graphs, are naturally repre-

sented as graphs, which are more complex structures that consist of nodes and edges

Figure 2.13: A single layer of a simple GNN.
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without a fixed grid.

The concept of neural networks applied to graphs has been evolving for several

years. Early approaches to graph neural networks (GNNs) were based on recur-

rent neural networks and were proposed to learn node representations by iteratively

aggregating information from their neighbors. The Graph Neural Network model

introduced by Scarselli et al. in 2009 [102] is one of the seminal works in this area.

However, it was not until the introduction of GCNs by Kipf and Welling in 2017 [34]

that the field saw significant advancements and widespread adoption.

GCNs extend the operation of traditional CNNs to graph-structured data by

generalizing the convolution operation. The key idea is to redefine the convolutional

operation to operate on the nodes of the graph, taking into account their connections

as defined by the edges. Mathematically, the GCN layer can be expressed as:

H(l+1) = σ
(
D̃−1/2ÃD̃−1/2H(l)W (l)

)
(2.26)

where: - H(l) is the matrix of activations in the l-th layer, - Ã = A + I is the

adjacency matrix of the graph with added self-loops (where I is the identity matrix),

the graph can be both weigthed and unweighted. - D̃ is the degree matrix of Ã, -

W (l) is the weight matrix of the l-th layer, - σ is a non-linear activation function

(e.g., ReLU).

The addition of self-loops ensures that each node’s own features are included in

the aggregation. The normalization by D̃−1/2 ensures that the feature vectors are

properly scaled.

GCNs have demonstrated powerful capabilities in a variety of applications:

• Node Classification: Assigning labels to nodes based on their features and

the graph structure, e.g., classifying users in social networks or proteins in

biological networks.

• Graph Classification: Predicting labels for entire graphs, e.g., determining the

type of chemical compounds based on their molecular structure.

• Link Prediction: Predicting the existence of edges between nodes, useful in
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Figure 2.14: Architecture of a Multi-layer Graph Convolutional Network (GCN)
with ReLU activation function

social network analysis and recommendation systems.

• Clustering: Grouping nodes into clusters, useful in community detection in

networks.

The rise of GCNs has significantly impacted how we approach problems involving

graph-structured data, providing a robust framework that leverages both the features

of nodes and the intricate web of relationships between them.

Time Complexity of GCN

The time complexity for a single forward/backward pass of a GCN is O(GL · GN ·

F 2 + GL · GE · F ) [103], where GL is the number of layers, GN is the number of

nodes, GE is the number of edges and F is the number of features. So, the overall

time complexity is the sum of the time complexity of 1 backward pass and 1 forward

pass. Since, both the time complexities are same, the total time complexity a GCN

can be represented as-

Tgcn = O(GL ·GN · F 2 +GL ·GE · F ). (2.27)
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Brain Tumor Segmentation

The development of computer vision techniques for brain tumor segmentation is vital

for accurately delineating tumor boundaries, which is essential for precise diagno-

sis, treatment planning, and monitoring of brain cancer. Accurate segmentation

allows for the identification of tumor characteristics, enabling personalized treat-

ment strategies such as targeted radiotherapy and surgical planning that can improve

patient outcomes. Moreover, these techniques enhance the consistency and reliability

of tumor assessment, reducing the risks associated with manual interpretation and

contributing to more effective and timely interventions in clinical practice.

3.1 Introduction

Formation of abnormal groups of cells inside or near the brain leads to brain tumor.

These abnormal cells disrupt normal brain functions thereby leading to consider-

able degradation of the health of a patient. Brain image analysis [104] is considered

imperative for detection of brain tumors as they are responsible for a large number

of deaths world-wide. Currently radiologists use contrast to delineate tumor from

surrounding brain parenchyma and for subsequent classification of the tumors as low

grade (poor/minimal enhancement) to high grade (intense enhancement). The en-

hancement reflects the vascularity/neoangiogenesis within the tumor and break down

of blood brain barrier. A challenge faced by the radiologist and the neurosurgeon is

to demarcate the tumor margins when the lesion is poorly defined and is diffusely in-
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filtrative. Recently, there have been concerns about the usage of Gadolinium and its

deposition in the brain. Neuro-radiologists would prefer a shorter but accurate way

of identifying tumors that can speed up the pre-operative diagnosis, maybe by using

only a few essential MR sequences. In a centre with a large caseload, this would

be extremely beneficial as it would free the MR scanning machine for more urgent

scans. A pre-operative assessment of the tumor using 3D visualization techniques

help in planning the surgical path and trajectory. The surgeon can then avoid the

eloquent areas, blood vessels and other vital structures during surgery. This leads

to excellent outcome for the patient with minimal complications and morbidity.

3.2 Related Work

In this section we discuss about the works already pursued for this task and their

drawbacks which we have tried to overcome. We divide our discussion into three

areas, namely, classical techniques, followed by deep learned techniques and finally

mention those techniques that used both of the former techniques.

3.2.1 Classical techniques

Classical techniques such as level sets [105] and graph cuts [106] have been ex-

tensively used for segmentation [107], where, domain specific image features (e.g.

gradient, intensity, texture, etc.) can be combined within an energy minimization

framework. However, a majority of these algorithms rely heavily on initialization

such as manual seeding, and are susceptible to segmentation errors due to unreliable

location of the initial seed.

3.2.2 Deep learned techniques

In recent times, deep convolutional neural networks (CNN) have shown signifi-

cant improvement, especially, in segmentation and classification problems [108–110].

However, traditional fully supervised techniques disregard domain knowledge which

could help in better segmentation. CNNs for segmentation can be categorized based
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on the dimension of convolutional kernel that is utilized. 2D CNNs employ 2D con-

volutional kernels for segmenting a single slice. Although, they are able to leverage

contextual information across the height and width of the slice to make predictions,

they are unable to extract any information from the adjacent slices. 3D CNNs mit-

igate this issue by using 3D convolutional kernels to predict 3D segmentation maps

for a volumetric patch of a scan. This ability to grasp inter-slice context can improve

the segmentation performance [111,112].

However, 3D CNN comes with a computational cost as a result of the increased

number of parameters used by them. Also, training 3D volumes at once consumes

huge amount of computer memory making it difficult to train on large datasets.

Recently, good segmentation performance have been achieved using a modified 3D

CNN known as V-Net using Attention Guided (AG) , Squeeze and Excitation (SE)

[113] and multi depth fusion modules [114].

3.2.3 Combination of classical and deep learned techniques

Combination of classical and deep learning techniques have been used in solving

many medical imaging problems where data driven and domain specific approaches

have been cascaded or ensembles of both techniques have been formed [115, 116].

We took inspiration from [115] where they mixed deep learning and graph cut to

segment lung nodules. However, their work was restricted to 2D. They also did not

modify the terms in the energy function of the graph cut, which can have significant

impact on the segmentation performance. Furthermore, they used manual seeds for

initialization of the graph cut algorithm. In sharp contrast, we have addressed the

tumor segmentation problem in 3D. The data term, the smoothness term and the

parameter which relatively weighs these two terms in the energy function of the

graph cut are modified through a 3D deep learned model. We have further removed

the need to manually initialize the seeds.

65



Chapter 3 Brain Tumor Segmentation

3.3 Contributions

In this work, we propose a deep graph cut model for segmenting brain tumors in 3D.

The proposed approach combines data driven (graph cut) and domain specific (deep

learning) strategies that are suitable for addressing the complexities of segmenting

highly irregular structures like brain tumor. We term our solution Deep Graph

Cut (DGC). DGC embeds deep learned probability maps of object (tumor) and

background (everything other than tumor) voxels into the energy function of the

graph cut. The deep learned voxel probabilities make the model highly robust to

initialization errors. On the other hand, the unsupervised graph cut component

can accurately segment structures through an energy minimization framework. To

motivate the reader, we included a segmentation result using the proposed method

in Fig. 3.1. In this figure we have shown two samples of MRI axial brain scans

along with their corresponding segmented tumor. In Fig. 3.2, we also show how the

segmentation looks in 3D both including and excluding the surrounding brain tissue

region. We now summarize our contributions below:

1. Methodologically speaking, we propose a novel 3D segmentation framework by

combining UNet and graph cut. In this framework, we derive new expressions

for the data term, the smoothness term and the weighting parameter in the

energy function of the graph cut from the probability maps of tumor and non-

tumor voxels obtained from the UNet. Deep learned voxel probabilities from

UNet make the model significantly robust to initialization errors. Unsupervised

graph cut on the other hand offers flexibility to segment objects with intricate

morphology.

2. From the application perspective, we solve 3D tumor segmentation, an im-

portant problem in brain imaging which has a far-reaching impact for the

radiologists and the neurosurgeons.

3. We show a way to automate the evaluation of the manual parameter λ (used

to balance the data term, and the smoothness term) in our Deep Graph Cut

algorithm.
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Figure 3.1: (a) A 2D axial slice view of an MRI brain scan, (b) segmented tumor
region of (a), (c) 2D axial slice of another brain scan, (d) the corresponding seg-
mented tumor output

Figure 3.2: 3D view of the segmented tumor. (a) shows the input 3D MRI volume
along with the axial, sagittal and coronal slice views. (b) shows the 3D segmented
tumor along with the input brain scan (c) shows the 3D segmented tumor in isolation.
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3.4 Proposed Method

In this section, 3D segmentation using UNet and graph cut are discussed first. We

then describe in details our proposed solution (DGC). The section is completed with

Algorithm 1 showing the steps of the DGC.

3.4.1 3D Brain Tumor Segmentation using UNet

We choose 3D UNet [33], a fully convolutional deep network architecture, as it is

efficiently handles pixel-wise semantic labelling. UNet is an encoder-decoder network

widely used for medical image segmentation [117]. This deep network can yield

decent performance even in the absence of large amount of training data. The

below Fig. 3.3 illustrates the U-Net model architecture. It comprises an expansive

mechanism (right portion) and a contracting mechanism (left portion). Here the

contracting mechanism is similar to the model of a convolutional neural network.

This mechanism comprises two recurring 3 × 3 × 3 un-padded convolutions. Each

convolution is accompanied with a ReLU and a 2× 2× 2 max pool operation using

stride 2 for down-sampling. The count of the feature map is doubled at each of the

down-sampling steps. The up-sample of the feature map at each step accompanied

with a 2×2×2 up-convolution as a part of the expansion mechanism. The up-sample

reduces the count of feature channels by half. The feature map obtained from the

expansion path is combined with the contraction block feature maps with the help of

two operations, namely, one is convolution and another is ReLU operation. At each

convolution, a crop operation is needed because of the reduced number of pixels at

the border. Finally, a 1×1×1 convolution is utilized with the output feature vector

to determine the output class numbers. There are a total of 23 convolution layers

in the overall network architecture. The up-sample operation in the architecture is

designed such that the contextual information from the contracting path to expansive

path can be maintained. This process finally makes the expansion block similar to

the contraction block which generates a U-shape model. The network is trained

for 500 epochs with stochastic gradient descent with initial learning rate of 0.0001,

weight decay of 0.00001 and mini-batch size equal to 2 samples. We have used Adam
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Figure 3.3: Architecture of 3D UNet. The numbers in each block represent the
feature size

Optimizer and binary cross-entropy loss (as shown in Eq. 3.1) in the process. For

3D segmentation, the loss is computed over the entire volumetric data, where both

the ground truth labels Y and the predicted segmentation Ŷ are 3D tensors of size

(D,H,W ), where D is the number of slices (depth), H is the height, and W is the

width of the volume. The binary cross-entropy loss is computed voxel-wise and then

averaged over the entire 3D volume:

LC = − 1

N

D×H×W∑
i

[yi log(ŷi) + (1− yi) log(1− ŷi)] (3.1)

where N = D × H × W is the total number of voxels in the 3D volume. This

ensures that the loss function is applied consistently across all voxels in the volume,

capturing the full spatial information in 3D.

3.4.2 3D Brain Tumor Segmentation using Graph Cut

The input MRI is a 3D gray-scale volume which is represented by a 3D weighted

graph G = G(V,E). Each voxel x is a vertex in G and the set of all voxels is denoted

by X. We consider two additional nodes, ‘source’ and ‘sink’, which are respectively

denoted by s and t. We consider two types of edges/links, namely, the t-links (T)

and the n-links (N). Each voxel x is connected to s and t via t-links. We use dense

26-neighborhood, denoted by Ne(x) for each voxel x. Let y be a neighbor of x. So,
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y ∈ Ne(x) and we connect x and y via a n-link. Thus, V = X∪s∪ t and E = T ∪N .

Let us define a segmentation A, which is a voxel-wise classification of all voxels into

two classes, i.e., either the ”object” or the ”background”. Hence, following [106],

we need to minimize the following energy function:

ζ(A) = B(A) + λR(A) (3.2)

where B(A) denotes the boundary properties/smoothness term and R(A) denotes

the regional properties/data term of A. Mathematically, these terms are expressed

as:

B(A) =
∑

x∈X,y∈Ne(x)

B(x,y) (3.3)

R(A) =
∑
x∈X

Rx (3.4)

where Rx and B(x,y) follow the standard definition of data and smoothness term

in [118].

3.4.3 3D Brain Tumor Segmentation using Deep Graph Cut

The learned information from 3D UNet is embedded into the energy function of the

3D graphcut to achieve accurate segmentation. For each image, the 3D probability

map is extracted from the last convolutional layer to calculate the probability of

any voxel to belong to either tumor or background. In the proposed deep graph cut

(DGC) model, we introduce a new data term, a new smoothness term and further

combine the proposed data term and smoothness terms using a variable weight

factor.

The 3D UNet estimates a regression function which maps each voxel of a 3D

input image to a corresponding 3D voxel wise segmentation probability map P :

R3 → (0, 1) which also serves as an automated seed for the graph cut algorithm.
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The deep learned data term is expressed as follows:

RDGC(x)(Obj) = − lnPr(x = Obj)UN (3.5)

RDGC(x)(Bkg) = − lnPr(x = Bkg)UN (3.6)

where the terms Pr(x = Obj)UN and Pr(x = Bkg)UN respectively indicate the

probability of any voxel x to belong to the object (tumor) class and the background

(anything other than tumor) class obtained from the UNet (UN). Naturally, ∀ x, we

have Pr(x = Obj)UN + Pr(x = Bkg)UN = 1. The negative log-likelihood assigns a

negative value to the object pixels (voxels), and a positive score for background.

Brain MRI volumes tend to have low contrast between the tumor region and its

surrounding structures thereby making the segmentation process difficult. In order

to handle such constraints, we modify the smoothness term. The modification relies

on the difference in the probabilities of any voxel and its neighboring voxel to belong

to the tumor and the background classes. The improved smoothness term is given

by:

BDGC(x, y) = K(x,y) exp−(
(Ix − Iy)2

2σ2
)×

1

d(x, y)
× 1

δ(x, y)DGC

(3.7)

where the term d(x, y) denotes the Euclidean distance between two voxels x and

y having intensity values Ix and Iy respectively. The term K(x,y) is based on the

probabilities of these two voxels (x and y) to have the same segmentation class and

is formulated as follows:

K(x,y) = 1− |Pr(x = Obj)UN − Pr(y = Obj)UN | (3.8)

The value of K(x,y) is higher when the probability of two neighboring voxels to

belong to the same segmentation class is similar, i.e., when their absolute difference

in probability values are less. The factor σ is chosen manually depending on image
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noise level. The term δ(x, y)DGC denotes the sum of differences between probabilities

of neighboring voxels x and y to belong to the class tumor (object) and the class

background. This can be expressed as:

δ(x, y)DGC = |Pr(x = Obj)UN − Pr(y = Obj)UN |+

|Pr(x = Bkg)UN − Pr(y = Bkg)UN |
(3.9)

Note that the value of δ(x, y)DGC , for different regions (in fact for each voxel pair

(x, y)) is calculated from the probability map derived from the output of UNet for

the specific MRI input given. Hence, it is more robust and takes into account the

variations in each input MRI encountered.

In the graph cut-based segmentation framework, the parameter λ regulates the

relative importance of the smoothness term and the data term (see Eq. 3.2). It

is crucial to properly choose this parameter as it largely influences the quality of

the segmentation [106]. Ideally, the optimal value of λ should neither cause over-

segmentation nor under-segmentation. However, finding an optimal value for this

parameter remains a challenging problem. To remove the dependence on manual

selection of this parameter, we propose in this work an automated calculation of λ,

from the probability maps obtained from the 3D UNet. The calculation is based on

the following careful observations:

1. If a voxel lies deep within the foreground or the background region, more

importance should be given to the smoothness term. For such an interior

voxel, the surrounding voxels generally have considerably higher probabilities

to belong to the same segmentation class.

2. The data term is given more importance whenever a voxel lies nearer to the

edge or boundary region. For such a terminal voxel, the surrounding voxels

usually have much lower probabilities to belong to the same segmentation class.

Hence, we write λ ∝ ψUN(x), where ψUN(x) is given by:

ψUN(x) = |Pr(x = Obj)UN − Pr(x = Bkg)UN | (3.10)
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Note that a higher ψUN(x), which is determined from the probability maps in UNet

denotes that the voxel is more towards the interior of the object (tumor). Unlike

[119], where the authors used classical techniques to modify λ, we employed deep

learned probability maps to modify it. Hence, the final form of λ becomes:

λDGC(x) = PψUN(x) (3.11)

where P is a constant which maps ψUN(x) that lies between [0, 1] to λ that lies

between [λMin, λMax]. For our experiments, we have set λMin = 1 and λMax = 100

so that the data term has considerable impact on the energy function, which would

not have been possible if λMin and λMax lies between [0, 1]. Finally, combining

equations (3.5), (3.6), (3.7) and (3.11), we get the final modified energy function as

shown below:

ζDGC(A) =
∑

x∈X,y∈Ne(x)

BDGC(x, y)+

λDGC(x)
∑
x∈X

RDGC(x)

(3.12)

Minimizing the above energy function via graph cut according to [106] will result in

a 3D segmented image.

Algorithm 3.1: Deep Graph Cut (DGC)

Input: Trained 3D UNet model M , 3D graph G representing the 3D input
MRI I, where V is the set of nodes/voxels and E is the set of edges

Output: 3D graph Gout with desired segmentation
1 P ←M(G)
/* Applying M on G, we get the 3D probability map P */

2 Modify data term RDGC(x) for each voxel in x ∈ G using P following
Equations 3.5 and 3.6

3 Compute smoothness term BDGC(x, y) for each voxel x and its neighbor
y ∈ Ne(x) in G using P as shown in Equation 3.7

4 Compute weight factor λ for each voxel in x ∈ G with P using Equation 3.11
5 Compute the final energy function using Equation 3.12, perform Graph cut

and store the result in Gout.
6 return Gout

73



Chapter 3 Brain Tumor Segmentation

3.5 Experimental Results

In this section, we first discuss data preparation. We then extensively evaluate our

solution, including ablation studies and comparisons with external approaches. We

implemented UNet in Tensorflow [120] and trained it on HP-Z640 workstation with

14 Core Intel Xeon processor, 128GB of memory and NVIDIA Titan RTX 24GB

dedicated graphics processor.

3.5.1 Data Preparation

For experimentation, publicly available BRATS 2018 dataset [121,122] is used. It is

already split into training and validation sets containing 285 and 66 scans respec-

tively. We use only T1-weighted contrast-enhanced (T1CE) sequences from each

scan for our experiments, as we found T1CE best represents the data in terms of

contrast. The data were publicly made available with some pre-processing, i.e. they

were co-registered to the same anatomical template, skull-stripped and interpolated

to a resolution of 1mm3. As all the scans were stored in compressed Nifti image

format (i.e., .nii.gz), we used SimpleITK library [123] to convert nifti format images

into 3D numpy array [124]. We further normalized all input images to have zero

mean and unit standard deviation (std) based on non-zero voxels only. For aug-

mentation, we applied a random intensity shift (-0.1 . . . 0.1 of image intensity std)

and scale (0.9 . . . 1.1) on the input images. We also applied random horizontal flips

(for x-axis) with a probability 0.5. As UNet requires the input image with a specific

resolution [125], and to reduce the memory constraints while minimizing information

loss, we crop each image volume from its original resolution (240× 240× 155) to a

resolution of (192× 192× 144). As the λ parameter is learned from the UNet, only

one parameter (σ) that is used in equation (3.7), is manually set to 4 during the

training phase after various trials.

3.5.2 Performance Metrics

For the quantitative performance evaluation, Dice Similarity Coefficient (DSC) is

employed [126]. DSC is a statistical metric used to measure the overlap between
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(a) (b)

(c) (d)

Figure 3.4: Qualitative comparisons for one dataset: (a) Ground Truth (GT), (b)
Segmentation using 3D UNet (DSC = 0.862), (c) Segmentation using Graph Cut
(DSC = 0.812), (d) Segmentation using DGC (DSC = 0.91)

75



Chapter 3 Brain Tumor Segmentation

(a) (b)

(c) (d)

Figure 3.5: Qualitative comparisons for a second dataset: (a) Ground Truth (GT),
(b) Segmentation using 3D UNet (DSC = 0.877), (c) Segmentation using Graph Cut
(DSC = 0.897), (d) Segmentation using DGC (DSC = 0.934).
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two sets, commonly applied in segmentation tasks to quantify the agreement between

the predicted segmentation and the ground truth. It is defined as:

DSC =
2|J ∩K|
|J |+ |K|

(3.13)

where:

• J is the set of voxels (or pixels) in the predicted segmentation.

• K is the set of voxels in the ground truth segmentation.

• |J ∩K| represents the number of overlapping voxels (true positives).

• |J | and |K| are the total number of voxels in the predicted and ground truth

segmentation, respectively.

DSC ranges from 0 to 1, where:

• DSC = 1 indicates a perfect match between the predicted segmentation and

the ground truth.

• DSC = 0 means no overlap at all.

Comparison Between Ground Truth and Segmented Output in 3D

We compute the Dice coefficient over the entire 3D volume, rather than on individual

2D slices. The equation for DSC in voxel-wise comparison across a 3D volume is:

DSC =
2
∑N

i=1 yiŷi∑N
i=1 yi +

∑N
i=1 ŷi

(3.14)

where:

• N = D ×H ×W is the total number of voxels in the 3D volume.

• yi represents the binary ground truth label for voxel i (yi = 1 for foreground,

yi = 0 for background).

• ŷi is the predicted label for voxel i (ŷi = 1 for foreground, ŷi = 0 for back-

ground).
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Table 3.1: Ablation study I: Graph cut, Graph Cut enhanced with combinations of
(a) DGC data term (b) DGC smoothness term (c) DGC variable weight factor. Best
values are shown in bold.

Modification DSC

Graph Cut (Boykov et al. [106]) 0.53± 0.17

GC with (a) and (b) only 0.883± 0.23

GC with (b) and (c) only 0.856± 0.19

GC with (a) and (c) only 0.87± 0.034

DGC (GC with (a), (b) and (c)) 0.92± 0.073

Table 3.2: Ablation study II: Graph Cut, 3D UNet, DL-GC in 2D and DGC. Best
values are shown in bold.

Algorithm DSC

Graphcut (Boykov et al. [106]) 0.53± 0.17

3D UNet (Çiçek et al. [33]) 0.83± 0.034

DL-GC in 2D (Mukherjee et al. [115]) 0.82± 0.062

DGC 0.92± 0.073

3.5.3 Ablation Studies

We have conducted two ablation studies. The first ablation study is undertaken to

demonstrate the individual contributions of the data term, smoothness term and

the variable weight factor in the proposed DGC algorithm. The results are shown

in Table 3.1. For all the combinations, UNet was used. As is evident from this

table, all the three terms contribute towards improving the performance of the DGC

algorithm. We also conduct a second ablation study to examine the contributions of

the 3D UNet and the Graph Cut used in isolation. Qualitative segmentation outputs

for two datasets are illustrated in Fig. 3.4 and 3.5. We also implement Mukherjee

et al.’s work [115] where they have modified only the data term of Graph cut using

2D UNet and required manual seeding, but we automatically initialized the seed for

Graph Cut using [127]. Table 3.2 indicates that DGC algorithm clearly outperforms

basic 3D UNet [33], vanilla Graph cut [106] and 2D-DLGC algorithm [115].
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Table 3.3: Comparison of State of the art Methods. Best values are shown in bold.

Algorithm DSC Sensitivity Specificity

EM Graphcut [128] 0.70± 0.21 - -
Random Walks [129] 0.72± 0.08 - -
Anfis Graphcut [130] 0.85 - -
3D CNN [131] 0.85 0.877 -
SegNet 2D [132] 0.85 - -
AGSE V-Net [113] 0.85 0.83 0.99
No New-Net [133] 0.878 - -
2D CNN [134] 0.88 0.84 0.88
NVDLMED [135] 0.8839 - -
2D M-UNet [136] 0.90 - -
UNet Ensemble [137] 0.90 - -
DGC 0.92± 0.0730.92± 0.0730.92± 0.073 0.94± 0.0030.94± 0.0030.94± 0.003 0.91± 0.0080.91± 0.0080.91± 0.008

3.5.4 Comparison with State-of-the-art Methods

We now compare our method with other state-of-the-art segmentation approaches

in table 3.3. The methods are diverse in nature, with some of them using deep

learning and others are not. Among the methods which have not employed deep

learning, we choose two Graph Cut based methods, one on random walks [129], one

method using Competitive Expectation Maximization Algorithm [128] and another

using normalization techniques [130]. Among the deep learning based methods,

We use a 2D CNN [134], a 3D CNN [131], V-Nets [113], BRATS 2018 winning

solutions [133, 135] and an ensemble 3D UNet [137]. The results of comparisons in

Table 3.3 are shown only for whole tumor segmentation with three metrics namely

Dice Score, sensitivity and specificity, and it clearly establishes the superiority of our

approach over all the competing methods. Note that most of the published works

did not report their sensitivity and specificity values.

3.5.5 Execution Time

During the testing phase, we have used a PC with Intel(R) Core (TM) i7 9th Gen

CPU processor having a base clock speed of 2.6 GHz and 16 GB RAM. Average

time for segmenting a 3D MRI dataset with resolution of 192× 192× 144 was 278s.
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3.5.6 Time Complexity Analysis

We have used 3D UNet and graph cut for segmentation of brain tumor in this work.

The time complexity of 3D UNet and graph cut is explained in Sec. 2.3.3 (Eq. 2.25)

and 10 respectively. Combining both the time complexities, we can represent the

overall time complexity for our solution as-

TDGC = TUNet + TGC

= O

(
4L∑
n=1

kn−1 · s3n · fn · l3n · r1 · b1 + V · E2

)
(3.15)

where d is the number of convolutional layers, ln is the length of the output feature

map in the nth layer, fn is the number of filters in the nth layer, sn is the filter size

in the nth layer, kn−1 is the number of input channels, r1 is the learning rate, b1 is

the batch size, V is the number of vertices/nodes in the graph and E is the number

of edges in the same graph.

3.6 Compliance with ethical standards

This research study was conducted retrospectively using human subject data made

available in open access by [121,122]. Ethical approval was not required, as confirmed

by the license attached with the open access data.

3.7 Summary

Detecting, delineating, and characterizing 3D brain tumors using MR imaging is

crucial for treatment planning. This work demonstrates how combining UNet with

graph cut improves 3D segmentation performance. We derive new expressions for

the graph cut energy function using probability maps from UNet. Our deep graph

cut model shows competitive performance on the BRATS dataset through extensive

testing.
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Brain Tumor Classification

The development of brain tumor classification techniques using multimodal data,

such as radiological and histopathological inputs, is crucial for improving diagnostic

precision and tailoring treatments in clinical practice. By integrating diverse data

sources, these techniques provide a comprehensive understanding of tumor charac-

teristics, leading to more accurate classifications and personalized therapies, which

enhance patient outcomes. Ultimately, the goal is to streamline the diagnostic pro-

cess, reduce uncertainty, and support more informed decision-making, thereby leading

to more effective and timely interventions in real-world clinical settings.

4.1 Introduction

As the most common primary malignant tumor of the central nervous system, glioma

comprise approximately 100,000 newly diagnosed cases each year [138]. Due to the

complex tumor micro-environment and spatial heterogeneity, Magnetic Resonance

Imaging (MRI) itself is insufficient for complete characterization of gliomas (e.g.

grading and sub-typing). Thus, histopathology examination is often required [139].

In histopathology, gliomas are classified based on the morphological features of the

glial cells including increased cellularity, vascular proliferation, necrosis, and infil-

tration into normal brain parenchyma [140, 141]. Histopathological classification

of brain tumours is dependent on the recognition of areas with the characteristic

histopathology for a particular tumour type. Classification of gliomas into astro-
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cytoma, oligodendroglioma and glioblastoma is the foundation upon which relies

the prognosis, treatment and management of the patient. Microscopic examination

is the gold standard, however there is great inter-observer variability based on the

subjective evaluation. Use of machine learning algorithms utilising the particular

histopathological characteristics of individual tumours, independent of subjective

analysis can help reduce this diagnostic variability. With advances in digital pathol-

ogy and whole slide imaging, morphology based automated pathologic diagnosis has

become a reality.

4.2 Related Works

The 2018 instance of the Computational Precision Medicine Radiology-pathology

challenge [142] is the first effort towards providing a publicly available dataset with

pairs of Whole Slide Images (WSI) and MRIs. Sahayam et al. [143] discarded

histopathology data and used only radiology data to perform classification and that

resulted in lower classification accuracy. Chan et al. [144] grouped WSI tiles into

several clusters in an unsupervised manner and applied a random forest for final pre-

diction. Xue et al. and Pei et al. [145, 146] both used tumor segmentation followed

by tumor classification on MRI volumes but performed a three-way simultaneous

classification that yields lower accuracy than binary classification. Hamidinekoo et

al. [147] also used three-way simultaneous classification and used 2D CNN for both

radiology and histopathology data. 2D CNN used for slice wise classification in 3D

MRI volumes is inefficient as 3D CNN captures more spatial information. The top-

performing method [148] used a soft-voting ensemble based on a radiographic model

and a histologic model. The MRI model relies on radiomics with prior automatic

tumor delineation, while the histologic model classifies patches extracted from WSIs

which are filtered using an outlier detection technique. The second-best performing

method [149] also used two models for both modalities. The radiographic model is

an end-to-end deep learning approach, while the histologic model uses a deep learn-

ing model to perform feature extraction by dropping its last layer, to further classify

a set of extracted tiles into a WSI prediction. Ma et al. [150] used two convolutional
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neural networks for radiology and pathology images respectively. ResNet34 and

ResNet50 were directly applied to extract features from WSI grayscale patches and

classified them. 3D DenseNet was employed for MRI sequence. A further regression

model was introduced for the inference. Pei et al. [151] segmented the brain tumor

from the MRI sequence, and then classified it by a regular 3D CNN model. But

they did not discover the massive information in WSI.

4.3 Contributions

In this chapter, we propose an effective pipeline for multi-modal tumor classifica-

tion among glioblastoma, astrocytoma and oligodendroglioma using radiological and

histopathological images. Our main contributions are as follows-

1. We apply a 3D CNN model for a coarse classification, i.e. glioblastoma vs.

non-glioblastoma (which could be either astrocytoma or oligodendroglioma)

from 3D MRI volumes.

2. We construct a deep feature extraction model for WSI using 2D CNN. Features

from two different magnification levels of the WSI are treated as local and

global features.

3. A feature vector combining the local and global features is used as

nodes/vertices for a Graph Convolutional Network (GCN). This GCN with

normalized graph Laplacian, used to perform the classification of non-

glioblastoma into astrocytoma and oligodendroglioma.

4.4 Proposed Method

Our proposed method primarily consists of three major steps, namely, i) radiological

data classification, ii) histopathological feature extraction and iii) classification of

histopathological data using GCN. We first perform a coarse classification from the

radiological data by inferring presence or absence of Glioblastoma. This is possible

as Glioblastoma exhibit distinctive macro features which can be identified from the
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3D MRI Volume

VoxCNN

Output G

DenseNet161

Global features Local features

Embedded Node

Yes

Concatenate

2D Histopathology

image patch

No

N,  A,  O?

Output N Output A

G?

Graph Convolutional Network (GCN)

Output O

Figure 4.1: Flowchart of our classification model: G’ stands for Glioblastoma, ’N’
stands for Normal, ’A’ stands for Astrocytoma and ’O’ stands for Oligodendroglioma.

MRI data. However, 3D MRI volumes provide very little information about tumor

subtypes like oligodendroglioma and astrocytoma. So, we use histopathological data

for that purpose. The overall flowchart of our classification technique is portrayed

in Fig.4.1.

4.4.1 Radiological phase

In this step, we consider only radiological data, i.e., 3D MRI volumes. Each subject

has 4 different types of MRI, namely, T1, T2, T1CE, and flair. We perform binary

classification by dividing the data into two groups for each MRI type, one group

consists of only glioblastoma subjects and the other group consists of astrocytoma

and oligodendroglioma subjects.
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(A) Data pre-processing and augmentation

Each MRI volume is first corrected using the N4 bias field correction algorithm [152],

a popular method for correcting low frequency intensity non-uniformity present in

the MRI image data. The original resolution of each corrected volume was 240 ×

240×155. Due to memory constraints, this volume was down-sampled to a resolution

of 128× 128× 128 using cubic interpolation re-sampling algorithm from SimpleITK

library [153].

Since, the number of subjects belonging to each class is different we apply hor-

izontal flipping along the sagittal plane on the volumes belonging to minority class

to balance the samples of each class.

(C) Classification model

The classification was based on VoxCNN [154] with appropriate modifications. In

this case, VoxCNN is trained from scratch for each of the four MRI types separately.

VoxCNN architecture has four volumetric convolutional blocks for extracting fea-

tures (with a number of filters increasing from layer to layer), two deconvolutional

layers with batch normalization and dropout for regularization and an output with

SoftMax nonlinearity for classification. We have kept the network architecture as

it is defined in the article [155]. The input files are in nifti format, and they are

normalized between 0 and 1 for keeping similarity among all models. Considering

the dataset size, model size and the limitations of GPU memory, we modified the

batch iteration process in order to get samples of each class in every batch. The

reason being that the probability of having only one class represented inside a batch

for infinite number of samples is 1
cb

where c is the number of classes and b is the

batch size. Therefore, for large batch sizes this probability is low. However, for

our problem, it is high enough to thwart the learning process. Balancing of the

samples inside each batch was hence undertaken to obtain stable learning curves.

Modulated Rank Averaging (MRA) method is applied next to perform weighted

voting among the 4 MRI types to arrive at the final prediction. In the traditional

majority voting method, the final prediction is based on the majority of classifiers’
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Figure 4.2: Overall workflow for radiological classification phase

outputs, but for multi-class tasks, it can be ineffective. While single classifiers may

perform well, difficult cases can result in higher error rates due to uncertainty among

categories. Our approach uses weight-adjusted probability vector fusion and ranks

classifiers based on their individual accuracy. Classifiers with lower training error re-

ceive greater weight when combining results during testing. We developed the MRA

technique in [154] and is described in details in Chapter 6. The overall workflow for

the radiological classification is shown in Fig. 4.2 where a, b are the labels that need

to be classified which is Glioblastoma and non-glioblastoma in our case. We have

numbered each VoxCNN model from 1 to 4 corresponding to the four types of 3D

MRI inputs - T1, T2, T1CE and FLAIR. C1 is the predicted probability vector of

model 1, pa,1 means the predicted probability by model 1 for the image to be in class

a. Other symbols have similar meanings. We finally do a softmax classification in

the end denoted as max(C).

4.4.2 Histopathological phase

The process of selecting representative patches to be used during the training phase

is very important and can be quite time-consuming. Weakly-supervised approaches

[156] only use the slide labels during the training of the aggregation model. In
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(a) (b) (c)

Figure 4.3: Axial flair MRI images of (a) Glioblastoma Multiforme, (b) Astrocytoma,
(c) Oligodendroglioma. It can be seen in case of (a) the tumor region has thick
demarcations with a central dark necrotic region and an irregular whitish edema
region while in cases of (b) and (c) there is no such distinctive feature

contrast, we adopted a semi-automated approach for optimal selection of tiles.

(A) Patch selection

To select the most important tiles to classify WSIs, we have adopted a two-stage

approach.

Stage 1: We extract tiles/patches of size 1000 × 1000 pixels without any overlaps

from each WSI using deep zoom extractor provided in the openslide framework [157].

Each WSI produces patches from different magnification levels. We select two such

levels for our work. The first one has the highest level of magnification (20x) repre-

senting the local features and the other is 3 times zoomed out (17x), which represents

the global features. After experimentation, we found selecting two such levels give

the best representation of each WSI.

Stage 2: The histopathology images contain patches that include air bubbles,

cracks, and blurred regions. We remove those tiles by studying the histogram of

the images. For this purpose, we devised an automated technique selecting only

those images that have a balanced histogram, i.e., those images that have higher

number of pixels between intensity range 0 - 192 than those in the range 192 - 255

in all three color channels. After careful observations, we found that the artifacts

mentioned above are mostly grayscale and hence have most of the pixels with inten-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Histopathology images of (a) normal, (b) glioblastoma, (c) astrocytoma
and (d) oligodendroglioma cells with global magnification level. Corresponding im-
ages (e), (f), (g) & (h) are shown with local magnification level.

sity greater than 192 in all three channels. Here, the lowest intensity 0 represents

white and highest intensity 255 represents black.

Stage 3: Even after removing unnecessary patches, some of them do not contain the

necessary cellular information, as the tumor has not spread throughout the whole

tissue scanned in the laboratory. Some regions had healthy cells, while others had

tumor cells distinctly visible. Our neuro-pathologists manually select patches that

contain only healthy cells labelled as ’N’ (normal) and patches that contain more

than 80% tumor cells, labelled as ’A’ (astrocytoma) or ’O’ (oligodendroglioma). Ex-

ample images of normal, glioblastoma, astrocytoma and oligodendroglioma at two

different magnification levels are shown in Fig. 4.4. We have selected equal number

of patches for each class from each magnification level to prevent class imbalance.

The extracted tiles were then randomly investigated visually to reassure false tiles

were not included in the training set.

Deep feature extraction

We apply DenseNet model [158] with 161 layers to extract the deep features from

each patch. We chose DenseNet over other popular neural networks like VGGNet or

ResNet because DenseNet is more complex than VGGNet and achieves better results
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using fewer parameters than ResNet. DenseNet is more complex than VGGNet due

to its dense connectivity, where each layer receives inputs from all preceding layers,

leading to better feature reuse and gradient flow. Unlike VGGNet, which consists of

sequential convolutional layers, DenseNet reduces redundancy by explicitly reusing

features, making it more parameter-efficient. Compared to ResNet, which uses resid-

ual connections to ease gradient propagation, DenseNet achieves better results with

fewer parameters by minimizing redundant feature learning and encouraging feature

reuse across layers. The last two layers of DenseNet are modified to extract features

of 1000 dimensions. The model is trained to classify among three classes (‘A’, ‘O’

and ‘N’). Let the feature vector Fi for an image i (i = 1, · · · ,M) be represented as:

Fi = [F
g(1)
i , · · · , F g(1000)

i , F
l(1)
i , · · · , F l(1000)

i ] (4.1)

F
g(j)
i =

∑S
x=1 F

g(j)
x

S
, j = 1, · · · , 1000;x ∈ i (4.2)

and

F
l(j)
i =

∑T
x=1 F

l(j)
x

T
, j = 1, · · · , 1000;x ∈ i (4.3)

Here, Fi = [F
(j)
i , j = 1, · · · , df ] (df = 2000) is obtained by concatenating 1000

dimensional global feature vector F g
i = [F

g(j)
i , j = 1, · · · , 1000] and the 1000 dimen-

sional local feature vector F l
i = [F

l(j)
i , j = 1, · · · , 1000]. The total number of patches

(x denotes a patch) at the global level is denoted by S and that at the local level

is denoted by T . The global and local features are differentiated by their magnifi-

cation levels. The local features are highly magnified (at 20X Zoom level) whereas

the global features are less magnified (at 17x Zoom level). For this work, S = 150

and T = 1000. For each component of the global and local feature vector, averaging

is done over all the patches.
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4.4.3 Graph Convolutional Network

To make more precise and accurate decisions on classification, we employ graph

convolutional network (GCN) which can effectively capture the relation-aware rep-

resentation (RAR). Most of the classification models provide attractive results when

provided with a huge set of labeled samples. However, GCN can perform well with

fewer training samples, which is the case for the present problem. RAR can provide

the necessary information to guide the training with fewer examples. GCN can help

generalize the standard convolution operation to graph convolution [34].

(A) Graph Construction

We construct a graph G = G(V,E), with M nodes vi ∈ V, i = 1, · · · ,M and edges

eij = (vi, vj) ∈ E. Here, each node vi is represented by the concatenated feature

vector Fi and M denotes the number of image samples in the training set.

(B) Construction of Adjacency Matrix

The adjacency matrix, denoted as A, defines the relationships (or edges) between

vertices. Each element in A can be generally computed by using the following radial

basis function (RBF).

Ai,j = 1 if exp

(
− ∥vi − vj∥

2

σ2

)
> λ

= 0 otherwise

(4.4)

where, σ is a parameter to control the width of the RBF kernel, and λ is the similarity

threshold, both of which are chosen manually. λ determines the threshold above

which a pair of nodes should be connected. It is used to prevent the construction of a

highly connected (or even complete) graph, which will be computationally expensive

and redundant. We next obtain the graph Laplacian matrix L as follows:

L = D − A (4.5)
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where D is a diagonal matrix representing the degrees of A, i.e., Di,i =
∑

j Ai,j.

GCNs make use of the eigen-decomposition of graph Laplacian matrix to implement

information propagation within graph [34]. To enhance the generalization ability

of the graph, the symmetric normalized Laplacian matrix (Lsym) can be used as

follows:

Lsym = D− 1
2LD− 1

2

= I −D− 1
2AD− 1

2

(4.6)

where I is the identity matrix. Thus, GCN is able to apprehend the RAR feature

[159].

(C) Graph Convolutional Layers

The point of GCN is to express G through a neural network model f(X,A) in which

X ∈ RN×df . Mathematically, a multi-layer GCN updates all feature representation

for all nodes via the layer-wise rule:

H(l+1) = σ(LsymH
(l)W (l)) (4.7)

where σ is the ReLU function. H(l) ∈ RN×dl stands for the feature representation

of lth layer. Considering X = H(0), a two-layer GCN (2L-GCN) has the following

layers:

H(1) = σ(Lsym ×W (0)) (4.8)

H(2) = σ(LsymH
(1)W (1)) (4.9)

where W (0) ∈ Rd0×d1 , and W (1) ∈ Rd1×d2 are two trainable weight matrices. The

node feature set V and adjacency matrix A were passed to a 2L-GCN, and we

obtained H(2) ∈ RN×D where D = df . The H(2) was then combined with I via dot
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Figure 4.5: A coarse schematic of a two layer GCN with a fully connected neural
network classifier at the end. SOurce: [8]

product-

y = H(2)I (4.10)

Through a linear projection (LP) with trainable weights W (2) ∈ RN×NC , in which

NC denotes the number of classes,

z = yW (2) +W b (4.11)

where z ∈ RNC , and W b represents the bias. NC = 3 in our case. Hence, we

only need to train (W (0),W (1),W (2)) and cognate biases for this 2L-GCN. A coarse

schematic of a 2L-GCN is shown in Fig. 4.5, where X is the input adjacency matrix

and y is the output class label. Here, FCN denotes a fully connected neural network

which acts as a classifier and classifies the given features to produce the output y.

4.5 Experimental Results

In this section, we first describe the dataset. This is followed by a discussion on

the model hyper-parameters, and various other parameters used. Then, we present

an ablation study. Finally, we show the compariosns with several atate-of-the-art

approaches.
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4.5.1 Dataset

To train and validate our pipeline, we used the CPM-RadPath 2020 challenge dataset

[160]. The dataset consists of multi-institutional paired MRI scans and WSIs of

brain gliomas, obtained from the same patients. Each subject, belongs to one of the

following class- ’A’ (astrocytoma), ’O’ (Oligodendroglioma) and ‘G’ (Glioblastoma).

There are three data subsets: training, validation, and testing with 270, 78, and 40

co-registered radiology and histopathology subjects respectively. The radiology data

consists of four modalities: T1, T2, T1CE, and flair. The data after pre-processing,

co-registered to the same anatomical template, interpolated to the same resolution

(1mm3), and skull-stripped is found to be distributed. The histopathology data

contains one WSI for each patient, captured from H&E stained tissue specimens.

4.5.2 Training VoxCNN, DenseNet and GCN

All the computations are done in HP Z640 Workstation with Intel Xeon 14-core

Processor having 128GB Random Access Memory (RAM) and NVIDIA Titan RTX

24GB Graphics processor using PyTorch 1.9 [161] and PyTorch Geometric [162]

in Ubuntu 20.04. For the radiological classification (Section 4.4.1), the batch size,

learning rate and total number of epochs are 16, 27 × 10−6 and 200 respectively.

For the histopatholgy image classification (Section 4.4.2), each image was resized to

224×224 as required by the DenseNet model. The batch size, learning rate and total

number of epochs are 32, 3× 10−7 and 300 respectively. For the construction of the

adjacency matrix required to train GCN (Section 4.4.3), the σ and λ parameters are

experimentally set to 5 and 0.75 respectively. The GCN is trained for 1200 epochs

with a learning rate of 3 × 10−4. Adam optimizer and cross entropy loss function

are used for 3D CNN, 2D CNN and GCN.

4.5.3 Ablation Study

An ablation study is undertaken to demonstrate the impacts of individual modalities,

i.e., radiology and histopathology. Table 4.1 presents the results of the ablation

study, which evaluates three different scenarios:
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Table 4.1: Ablation study of various combinations of modality

Approach
F1
Score

Cohen’s
Kappa

Balanced
Accuracy

MRI Only 0.668 0.632 0.76
WSI Only 0.812 0.787 0.86
MRI+WSI 0.928 0.892 0.904

1. Radiological Features Only: Classification of tumor types based solely on ra-

diological features.

2. Histopathological Features Only: Classification of tumor types based solely on

histopathological features.

3. Combined Features: Classification using both radiological and histopatholog-

ical features.

The proposed pipeline is designed specifically for the third scenario, where both types

of features are utilized. To evaluate the first scenario, an alternative model, VoxCNN,

is trained to classify all tumor types instead of the original VoxCNN model, which

was trained to distinguish between glioblastoma and non-glioblastoma. Similarly,

for the second scenario, an alternative DenseNet model is trained in conjunction

with a Graph Convolutional Network (GCN) to classify all tumor types, replacing

the DenseNet+GCN model used in the proposed pipeline.

These experiments demonstrate that relying solely on radiological or histopatho-

logical data is insufficient to achieve the classification accuracy attained by the pro-

posed approach, thereby highlighting the importance of integrating both feature

types for improved tumor classification. As can be seen from Table 4.1, the pro-

posed model which combines both MRI and WSI modalities achieves the highest

accuracy.

4.5.4 Comparisons with State-of-the-Art Approaches

We now show comparisons with several state-of-the-art models in Table 4.2. Like

other reported works, we have evaluated our model using three different metrics,

namely, F1-Score (micro averaged), Cohen’s Kappa and Balanced Accuracy. As the
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Table 4.2: Comparison with state of the art models

Models
F1

Score
Cohen’s
Kappa

Balanced
Accuracy

Sahayam et al. [143] - - 0.754
Chan et al. [144] - - 0.78
Xue et al. [145] - - 0.849
Pei et al. [146] 0.886 0.801 0.8
Hamidinekoo et al. [147] 0.886 0.811 0.860
Wang et al. [163] 0.943 0.903 0.889
Ours 0.928 0.892 0.904

results demonstrate, we have clearly surpassed [143], [144], [145], [146], [147]. We

have outperformed [163] in terms of balanced accuracy but are marginally loosing

in terms of F1 score and Cohen’s Kappa.

4.6 Time Complexity Analysis

Our solution pipeline consists of three major components - VoxCNN, DenseNet-121

and GCN. The overall time complexity will be computed as the combination of the

time complexities if these three components.

The architecture of VoxCNN, which is used to identify Glioblastoma from 3D

MRI image, comprises of 4 CNN layers followed by 1 Fully Connected layer [155].

Let the time complexity of 3D VoxCNN model be written as-

T 3D
V = T 3D

conv + T 3D
fc (4.12)

where T 3D
conv and T 3D

fc are given in Eq. 2.17 and 2.20 of chapter 2 respectively.

The time complexities of DenseNet-121 and GCN is defined in Sec. 2.3.3 (see

Eq. 2.21) and Sec. 2.4.3 (see Eq. 2.27) respectively of Chapter 2. Combining all
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the three, the overall time complexity of our pipeline can be represented as-

T = T 3D
V + T 2D

D121 + TGCN

= O(
4∑

n=1

kn−1 · s3n · fn · l3n · r1 · b1 + C ·D ·W ·H ·N)+

O(
120∑
n=1

kn−1 · s2n · fn · l2n · r1 · b1 + C ·D ·W ·H ·N)+

O(GL ·GN · F 2 +GL ·GE · F )

= O

(
4∑

n=1

kn−1 · s3n · fn · l3n · r1 · b1 +
120∑
n=1

kn−1 · s2n · fn · l2n · r1 · b1 + 2(C ·D ·W ·H ·N)

)
+

O(GL ·GN · F 2 +GL ·GE · F )

(4.13)

where d is the number of convolutional layers, ln is the length of the output feature

map in the nth layer, fn is the number of filters in the nth layer, sn is the filter size

in the nth layer, kn−1 is the number of input channels, r1 is the learning rate, b1 is

the batch size, C is the number of input channels, W is the width of the input, H is

the height of the input, N is the number of neurons, GL is the number of layers, GN

is the number of nodes, GE is the number of edges and F is the number of features.

4.7 Summary

In this work, we have presented a brain tumor classification strategy by combin-

ing deep features and Graph Convolutional Networks. Use of both radiology and

histopathology data is shown to achieve state-of-the-art performance. We also

showed how effective graph building and embedding deep features helps Graph Con-

volutional Networks learn efficiently. In future, other modalities and tumor grades

will be included to perform a more comprehensive classification.
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Detection of brain tumor related

bio-markers

Brain cancer has a very high mortality rate. Gliomas are the most common ma-

lignant brain tumors, causing this severe fatality. Recent biological investigations

revealed that a holistic study of bio-markers, responsible for causing genetic mu-

tations in gliomas, can ensure a comprehensive prognosis and treatment plan for

the patients. In this chapter, we simultaneously predict five such important genetic

markers, namely, IDH, 1p/19q codeletion status, ATRX, MGMT, and TERT from

Whole Slide Images using deep learning.

5.1 Introduction

Brain tumors account for a disproportionate burden of cancer mortality because of

their high fatality rate; only one-third of individuals survive at least 5 years after

diagnosis [164]. Gliomas are the most common primary malignant brain tumors

in adults, arising from glial cells. More recently, several molecular signatures have

been identified to predict favorable patient response to treatment as well as overall

outcome in gliomas [165]. Collective study of various genetic mutations in gliomas,

which are captured through different bio-markers, are quite essential for a compre-

hensive prognosis and subsequent treatment plan [166].

Some attempts have been made in the past to identify bio-markers from radio-

logical data, like MRI, using machine learning techniques [167, 168]. But there are
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inherent limitations to using radiological data for predicting genetic markers. Firstly,

genetic markers are traditionally identified by examining histopathological data, like

Whole Slide Image (WSI) samples, as the effect of genetic mutations are more visi-

ble at the cellular level [169]. Secondly, as mentioned in [170], though a model can

be trained to learn the correlation between radiological features and the bio-marker

status; WSI data can offer morphological features, that help a model learn better

the distinguishing factors of the bio-markers. WSI offers a better explainability for

models trained to identify glioma bio-markers [171]. As shown in Fig. 5.1, there

are three different types of glioma tissues which exhibit quite different visual char-

acteristics. Each of them has a different combination of bio-markers. A model can

typically learn these combinations by capturing suitable features from WSI. Some

related problems have been quite well investigated. For example, multi-class brain

tumor classification is studied in recent times in [172, 173]. Multi-class bio-marker

detection [174] and prediction [175] using WSI image have also been investigated.

In such problems, one typically needs to focus on a single genetic marker, which is

solely responsible for tumor mutation. However, a more challenging, and biologi-

cally more intriguing problem, is to predict multi-label genomic bio-marker, where

multiple genetic markers collectively influence tumor mutation. Naturally, the com-

plexity of the problem increases with an increase in the number of bio-markers to

be detected. This class of problem remains largely unexplored.

We now discuss the biological importance of the five glioma genetic mark-

ers, which are predicted in this work. These markers are Isocitrate DeHydroge-

nase (IDH), combined loss of the short arm of chromosome 1 and the long arm

of chromosome 19 (1p/19q codeletion), O(6)- methylguanine-DNA methyltrans-

ferase (MGMT), Alpha- Thalassemia/mental Retardation, X-linked (ATRX), and,

Telomerase Reverse TranscripTase (TERT) in the context of gliomas. Literature

review suggests that these bio-markers can affect glioma individually, in a pairwise

manner, and, as a group. IDH genes play a pivotal role in low grade gliomas (LGG)

with favorable prognosis [14]. 1p/19q codeletion leads to better prognosis in oligo-

dendroglial tumors [176]. MGMT is a vital DNA repair protein. In glioblastoma
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(a) (b) (c)

Figure 5.1: Three glioma tumor tissue samples from TCIA [9]. (a) represents a
glioblastoma tumor with IDH-wildtype, No 1p/19q codeletion, ATRX-wildtype,
TERT mutated and MGMT methylated . (b) represents an Oligodendroglioma
tumor with IDH-mutant, No 1p/19q codeletion, ATRX-mutant, TERT unmutated
and MGMT methylated. (c) represents an Astrocytoma tumor with IDH-mutant,
1p/19q codeletion, ATRX-wildtype, TERT mutated and MGMT methylated.

patients, MGMT promoter methylation status is a significant marker for therapeutic

response to temozolomide, an alkylating agent [15]. Furthermore, ATRX mutations

are also important as they are associated with increased survival in individuals with

astrocytic tumors [177]. Finally, in the genomic landscape of gliomas, mutations in

the TERT promoter region have emerged as a common occurrence [178]. As a part

of pairwise behavior, one bio-marker influences the presence or absence of another

bio-marker in case of gliomal tumors. For example, as mentioned in [16], 1p/19q

codeletions are closely linked to IDH mutation. As demonstration of a composite

behavior, multiple bio-markers are found to influence different types of glioma. For

example, the presence of a TERT mutation without IDH mutation and 1p/19q co-

deletion suggests the occurence of Glioblastoma [10]. Such composite behaviors are

also captured by three glioma tumor tissue samples in fig. 5.1.

5.2 Related Work

We have come across some works, which have used machine learning techniques for

the prediction of genomic mutations. However, most of these studies are restricted

to separately predicting specific mutations only.
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In this context, we first discuss the works that have used MRI data for the

prediction of genetic bio-markers in gliomas. To predict the MGMT status, the

authors in [179] used multi-modal MRIs, and various deep learning architectures.

However, the reported results were not to the mark. In [180], the authors employed

various data preprocessing techniques, and applied deep learning models to find the

MGMT status. The reported results were again below par. In another work [181],

radiogenomic features were extracted from MRI data to classify the 1p/19q status.

Some works have attempted to predict two bio-markers from MRI data. Zhou et

al. [182] applied a random forest approach to initially determine IDH status. They

then trained a second model to predict 1p/19q status within the IDH mutant subset.

Nishikawa et al. [183] used 3D deep learning models on MRI data to simultaneously

predict the status of IDH and 1p/19q codeletion status. Tripathi and Bag [168]

performed classification of tumor grade along with the determination of IDH and

1p/19q status using MRI data. But MRI data provides information and features

about the tumor macro environment, which a model uses to learn the correlation

between label and data [170]. Further, the tumor region needs to be segmented

to learn the correlation, which requires additional processing and hence increases

the computational burden. Still, the model does not really learn the features of

cellular structures, which are directly changed as a result of bio-marker mutation,

as shown in [169]. Thus, it fails to provide valuable information about other bio-

markers like MGMT, ATRX and TERT which are analysed with WSI data in real

clinical scenario. This fact is corroborated by [179], where, they did not achieve

desirable prediction results for MGMT status from MRI. Similarly, as discussed

in [184], the morphological effects of ATRX and TERT mutations are clearly visible

in WSI images.

We also explored some works that have used WSI as their imaging modality. For

IDH status prediction, Liechty et al. [185] used uniform manifold approximation and

projection (UMAP) on patch-level embedding vectors of WSI images and achieved

decent results. For the same task, Liu et al. [186] used multiscale feature fusion

and arrived at even better results. In [14], the authors used GAN and incorporated
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patient specific information like age to predict the presence of IDH mutations. Wang

et al. [187], through their experiments using both MRI and WSI data, showed that

WSI data alone provides better classification accuracy for IDH status prediction than

that of from MRI. All these works clearly endorse the fact that WSI is certainly

a better modality for prediction of genetic markers (as compared to MRI). The

above review also indicates that there is a marked paucity of published works on

simultaneous prediction of multiple mutations, which is very much essential to plan

fast and efficient prognosis.

Note that the task of predicting multiple bio-markers is essentially a multi-label

prediction problem. We now discuss some loss functions, which are applied for multi-

label prediction tasks. Wu et al. [188] considered underlying distribution of data and

class imbalance to improve the performance of their model. However, they used a

binary cross-entropy based loss function. Further, their technique is more suitable

for datasets having long-tailed distributions, which is not the case here. Ridnik et

al. [189] employed asymmetric loss to reduce the negative effect of class imbalance.

They used Regions of Interest (ROI), whereas our model learns from the whole

image. Yessou et al. [190] compared various multi-label loss functions. However,

none of these functions have incorporated any label correlation knowledge, a very

important factor in medical image analysis [191].

As a summary, we can say that this is the first work which focuses on predicting

five genetic markers for brain tumors from the WSI data. In our proposed deep

learning based solution, we design a composite loss function, articulating different

behaviors of these markers.

5.3 Contributions

In this work, we simultaneously predict five different glioma causing bio-markers,

i.e., IDH, 1p/19q codeletion status, ATRX, MGMT and TERT from WSI images

using a deep network. A comprehensive knowledge of these five bio-markers can

ensure faster and better prognosis and treatment plan for the patients. In our

solution, we explicitly capture the individual, pairwise, and, group behavior of the
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Figure 5.2: Patch generation process: A whole slide image is divided into equal
sized square patches. Each patch is scanned and the uninformative patches (shown
in gray) are discarded. Remaining patches containing actual tissue images are saved.

bio-markers as revealed by the existing literature. A composite loss function is

designed by combining these three losses. We did not find any public dataset that has

directly made available a mapping of WSI image and the corresponding bio-marker

information. This mapping is crucial in order to learn label correlation information

from bio-markers along with image features from WSI. We carefully analyze, clean

and select data samples that had both bio-marker and WSI sample for the same

patient, and, create a new benchmark dataset for ready use. Our contributions are

now summarized below:

• We simultaneously predict five glioma causing bio-markers using a deep net-

work with a composite loss function. The three components of this loss function

are as follows:

– A multi-label weighted cross-entropy loss, with weights for each bio-

marker based on their probability of occurrence. We create a five-headed

FCN which fine-tunes the model to calculate the multi-label weighted

cross-entropy loss for each of the five individual bio-markers. This teaches

the model to predict bio-markers based on their individual traits.

– A conditional probability based loss function which harnesses the cause-

effect relationship of the bio-marker pairs. This teaches the model to
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Figure 5.3: Training workflow for a single WSI image at local magnification level.
This is repeated for other WSI images in the training set at local magnification level.
The whole training process is then repeated at global magnification level.

predict bio-markers based on their pair-wise relationship.

– A graph similarity based loss function that makes the model learn the

bio-marker co-occurrence information. This teaches the model to predict

bio-markers based on the composite (group-wise) relation among them.

• We build a common benchmark data repository with WSI image and the cor-

responding bio-marker information by integrating WSI data from The Cancer

Imaging Archive (TCIA) [9] with bio-marker data from the Genomic data com-

mons (GDC) [192] of the same patient. We believe this type of benchmark

will be beneficial for studying multiple bio-marker predictions of glioma. This

dataset can be publicly accessed here.

• We demonstrate through comprehensive experiments that we achieve state-of-

the-art prediction results by outperforming a number of competing methods

on the benchmark dataset.

5.4 Methodology

In this section, we first describe how the image is fed to the model, followed by the

design of loss functions. We then discuss how we conduct the training and testing

of the model. The overall training workflow of our network is shown in Fig. 5.3

whereas the testing workflow is shown in Fig. 5.4.
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(a)

(b)

Figure 5.4: Overall test time workflow of our model. (a) shows how we get a single
probability vector for a single WSI image for local magnification level. This process
is repeated at the global magnification level also. (b) shows how we derive the final
binary prediction from combining the results of (a).
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5.4.1 Image Feature Extraction

We use a CNN to extract features from WSI. Since, a single color WSI has extremely

high resolution (e.g., ∼ 20000× 20000× 3), it becomes impractical to directly feed

the image into a CNN. Hence, we divide the image into a bag of smaller equal sized

patches, following [193]. Another reason to use multiple different patches from the

same WSI image is to increase the sample size for training. Since, WSI is captured

from the actual tissue slide, it contains several unnecessary artifacts like bubbles,

dust, and, cracks. Furthermore, as the background (region without any tissue im-

age) is white, the extracted smaller white patches are of no use. So, we discarded

all the unnecessary patches using the same strategy as adopted in [194]. The patch

generation process is shown in Fig. 5.2. WSI at different magnifications convey

different feature information. To utilize these different types of information, patches

are extracted from 20× (local level) and 5× (global level) magnification, similar

to [195]. In the dataset, WSI is available in both magnification levels. Lower magni-

fication levels preserve overall morphological structures, while higher magnification

levels capture finer details [196]. Let each such input image patch of 20× magnifica-

tion of a sample WSI be denoted by I li (i = 1, · · · , nl), where nl is the total number

of local image patches in the bag. Similarly, each image patch of 5× magnification

level of the same WSI is denoted by Igi (i = 1, · · · , ng), where ng is the total number

of global image patches in the bag. Suppose, F l
i and F g

i be d-dimensional feature

vectors for I li and, Igi respectively, obtained using a CNN.

The F l
i ’s and F g

i ’s are next inputted to each FCN. All the FCNs have a sigmoid

layer in the end. Let the b-dimensional probability vectors denoting the occurrence

of the bio-markers for I li , and, Igi be respectively represented by pli and, pgi . For this

problem, b = 5. The pli’s and pgi ’s vectors are obtained from the b number of FCNs.

We further construct binary prediction vectors Bl
i and Bg

i from pli and pgi . Please see

Table 5.1 for the bio-markers and the interpretation of the values of 1 and 0. For the

sake of brevity, we will henceforth simply use B to denote a prediction vector. All the

constituent image patches of any particular WSI sample have the same annotation

(ground-truth). Hence, they have the same reference vector, say, Br. In this way,
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we have the training patches, with a prediction vector, and, a reference prediction

vector for all. The goal of training the model is to produce prediction vectors B

for the training patches belonging to a single WSI sample that are equal to the

reference vector Br of that WSI sample. Training is applied batch-wise on these

patches. Please refer to Fig. 5.3 for the training workflow.

5.4.2 Design of Loss Function

We design three different loss functions to capture individual, pairwise and groupwise

traits of the bio-markers. These three losses are eventually combined to form a

composite loss.

(A) Individual Multi-Label Weighted Cross-entropy Loss

Multi-label Weighted Cross-Entropy (ML-WCE) loss assigns weights to the bio-

markers based on the number of samples in the dataset for which they are present

and absent. This captures impacts of the bio-markers, solely at individual level.

In our dataset, the bio-markers are not evenly distributed among the samples. As

this is a multi-label problem, we need to obtain separate weights for different bio-

markers. Let the number of positive samples for the bio-marker i be si and the

number of negative samples for the same be ti. A positive sample means a value 1

for the sample, and, a negative sample means a value 0. Please see Table 5.1 for the

interpretation. The probability of presence of the bio-marker i can be calculated as

wsi = si
m

, and, the probability of absence of the bio-marker i as wti = ti
m

, where m is

Table 5.1: Details of the genetic markers: ID, Name, and, Interpretation of the
values of 1 and 0 following [10].

ID Name Value: 1 Value: 0
H IDH Mutant Wild-type
C 1p/19q codeletion Codeleted Non-codeleted
X ATRX Mutant Wild-type
M MGMT Methylated Unmethylated
T TERT Mutant Wild-type
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the total number of WSI samples. Standard cross-entropy loss is given by:

LC = −[yi × log(ŷi) + (1− yi)× log(1− log(ŷi))] (5.1)

where, yi and ŷi are the actual and predicted labels for the bio-marker i respectively

[197]. In this problem, we modify the above equation by adding the two weights wsi

and wti . Let us denote the modified cross-entropy loss for the bio-marker i by Ψi.

So, we write:

Ψi = −[wsi × yi × log(ŷi)+

wti × (1− yi)× log(1− ŷi)]
(5.2)

Each individual Ψi is calculated for each individual FCN in order to learn a specific

bio-marker as shown in Fig. 5.3. The loss for all the bio-markers is obtained as the

average over all Ψi. So, we write:

LC =
1

b

b∑
i=1

Ψi (5.3)

The training process aims to minimize LC so that Br and B becomes more similar

as training progresses, with the ideal goal of making B equal to Br.

(B) Pairwise Conditional Probability Loss

We next formulate a conditional probability based loss function to model pairwise

behavior of the bio-markers. The conditional probability links the presence/absence

of one bio-marker caused by presence/absence of a second bio-marker.

Let the estimated conditional probability be denoted by P(i = τ1|j = ψ1), where,

i, j are the bio-markers (i = 1, · · · , b; j = 1, · · · , b; i ̸= j). Let the actual conditional

probability, which is given as ground-truth, be denoted by Pr(i = τ2|j = ψ2). Here,

τ1, τ2, ψ1, ψ2 ∈ {0, 1}. We show in the Appendix with an example how P can be

obtained from B. Likewise, one can obtain Pr from Br. The conditional probability

loss is deemed as the absolute difference between the sum of estimated conditional
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probabilities and actual conditional probabilities and, can be expressed as:

LP =
b∑
i=1

b∑
j=1

(

∣∣∣∣Pr(i = τ1|j = ψ1)− P(i = τ2|j = ψ2)

∣∣∣∣
×δτ1,τ2 × δψ1,ψ2)

(5.4)

In the above equation, δτ1,τ2 is equal to 1 if τ1 and τ2 are equal, and is 0 otherwise.

Similar is the interpretation for δψ1,ψ2 . For the present problem, we selected 5 sets of

conditional probabilities, which are rendered biologically important by the experts.

As mentioned in [198], TERT mutations commonly occurs with 1p/19q codeletion,

therefore the probability P(T = 1|C = 1) is high and is an important relation to

consider. Similarly, as mentioned in [16], 1p/19q co-deletions are mutually exclusive

with ATRX mutations, i.e., P(C = 1|X = 0) and P(C = 0|X = 1) are important

relations. We likewise formulate the rest of the pairwise relations based on evidences

given in [10,16]. Hence, for this work, the general equation in (5.4) can be simplified

to:

LP =

∣∣∣∣Pr(T = 1|H = 1)− P(T = 1|H = 1)

+ Pr(M = 1|H = 1)− P(M = 1|H = 1)

+ Pr(C = 1|X = 0)− P(C = 1|X = 0)

+ Pr(C = 0|X = 1)− P(C = 0|X = 1)

+ Pr(T = 1|C = 1)− P(T = 1|C = 1)

+ Pr(X = 1|H = 0) − P(X = 1|H = 0)

∣∣∣∣ (5.5)

where, H, C,X ,M and T refer to the bio-markers as shown in Table 5.1. The

training process aims to minimize LP .

Now, we show how to calculate the probability P(i = τ1|j = ψ1) for any two

bio-markers τ and ψ. To obtain P(i = τ1|j = ψ1), we need the predicted binary

vector B. Since, we get a batch of Bs as output during training, we can calculate

P(i = τ1), P(j = ψ1) and P(i = τ1 ∩ j = ψ1) by first finding the number of times

i = τ1 occurs, j = ψ1 occurs, and, i = τ1 and j = ψ1 jointly occur, respectively; and
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then dividing each by the batch size. An example of how to find P(i = 1|j = 0) is

presented below.

Let us consider a batch with size z1 + z2 + z3 + z4. Here, z1 is the number of

occurrences where both i and j have values 1; z2 is the number of occurrences where

i has a value 1 but j has a value 0; z3 denotes the number of cases where i has a

value 0 but j has a value 1; and, z4 is the number of cases where both i and j have

values 1.

P(j = 0) =
z1 + z2

z1 + z2 + z3 + z4
(5.6)

P(i = 1 ∩ j = 0) =
z2

z1 + z2 + z3 + z4
(5.7)

Hence,

P(i = 1|j = 0) =
P(i = 1 ∩ j = 0)

P(j = 0)
=

z2
z1 + z2

(5.8)

(C) Group-wise Spectral Graph Loss

We introduce here a third type of loss using a graph-based formulation. This loss

aims to make the model learn about co-occurrence of multiple bio-markers. The

group information of the five genetic markers is captured through a weighted com-

plete graph G = G(V,E). Each vertex of this graph denotes a genetic marker as

explained in Table 5.1. So, V = [v1, v2, · · · , vb] and |V | = b. We previously obtain

the b-dimensional binary prediction vector, B. This means, B[i] denotes the value of

vi and likewise. In the complete graph, we represent the affinity of the bio-markers

by assigning appropriate weights to the edges. For example, in a particular sample,

if three out of the five bio-markers occur together, then the edges connecting them

are assigned high values. In contrast, the edges connecting these vertices with the

two remaining vertices are given low values. This is shown in Fig. 5.5, where, three

different graphs are built from the genetic information of the sample images shown
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(a) (b)

(c)

Figure 5.5: Graphs in left, middle, and right are for the three glioma tumor tissue
samples shown in Fig. 5.1. Here, the vertices are the status of bio-markers, an edge
with weight 1 connects two bio-marker vertices having same value as denoted in
Table 5.1. An edge with weight e−2 means the bio-markers connected by that edge
have different values.
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in Fig. 5.1. We set the edge weights (wij) between the vertices vi and vj using the

following equation:

wi,j = e−2|vi−vj | (5.9)

So, |vi − vj| can assume a value of either 0 (when vi and vj have same values) or

1 (when vi and vj have opposite values). Exponentiation is introduced to provide

more discrimination between these two cases, making the edge weights either 1

(when vi and vj have same values) or e−2 (when vi and vj have opposite values).

This WSI sample has a reference ground-truth binary vector Br (provided by the

expert annotators in the dataset). So, one can create a complete reference graph Gr

from Br in the same manner as G is built from B. The procedure to create graph

G from binary vector B is described below.

Let a predicted vector be represented by B̂J
I = [0, 1, 1, . . . , 0, 1] (where I and J

have their usual meanings). This sample also has a ground truth represented by

BJ
I = [0, 1, 0, . . . , 1, 1]. Let ĜJ

I and GJ
I be the graphs constructed from B̂J

I and BJ
I

respectively. The procedure to create graph GJ
I from binary vector BJ

I is described

below.

To ensure that nodes having same values are connected together and to make the

whole process compatible with back propagation, i.e., to make each step derivable,

we use matrix based operations like negation and stacking of 1-D vectors to create

a 2-D adjacency matrix A.

1. First we find B′ = 1−B which is the complement of a binary vector B.

2. Then, we create A by concatenating either B or B′ row-wise.

3. If, in the original vector B, the ith index is 1, then we add B as a row in A.

Otherwise, we add B′ as a row in A.

Algorithm 5.1 describes the above process in a concise manner. The goal of the

training process is to minimize the structural difference between the two graphs G

and Gr. This difference is calculated using spectral decomposition of graphs [199].

Let A and Ar be the adjacency matrices of G and, Gr respectively. Further, let D
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and Dr be the diagonal degree matrices of G and, Gr respectively. Then, we can

write:

L = I −D−1/2AD1/2

Lr = I −D−1/2
r ArD

1/2
r

(5.10)

where, L and Lr are respective symmetric normalized Laplacian of the graphs, and I

is the identity matrix. We then compute the eigenvalues (λ) of the above Laplacians,

and, define the spectral graph loss as:

LG =
k∑
i=1

|λ(i) − λr(i)|2 (5.11)

where k is given by the following equation:

k = min

[{
arg min

q

(∑q
i=1 λi∑b
i=1 λi

)
> ϕ

}
,

{
arg min

t

(∑t
i=1 λr(i)∑b
i=1 λr(i)

)
> ϕ

}] (5.12)

Here, ϕ is a threshold. We keep the top k eigenvalues that contain (ϕ × 100)% of

the energy. Two graphs, G and Gr are more similar if LG is closer to 0. So, the goal

is to minimize LG.

(D) Composite Loss

We have formulated three different loss functions to make the model learn three

different types of information. The total loss is designed as a linear combination of

the three loss functions and can be hence expressed as:

LT = αLC + βLP + γLG (5.13)

The three constants, α, β and γ appearing in the above equation, are determined

experimentally.
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Algorithm 5.1: Training Process

Input: nl number of local image patches each denoted as I li
Output: b-dimensional binary prediction vector B

1 while loss is not minimized do
2 i← 0
3 while i < nl do
4 Extract local features F l

i from I li using a CNN
5 Compute b-dimensional probability vectors and pli by inputting F l

i

into b number of FCNs respectively
6 Compute b-dimensional binary prediction vectors Bl

i from and pli
respectively

7 Compute ML-WCE Loss from Eq. 5.3 using Bl
i

8 Compute Conditional Probability Loss from Eq. 5.5 using Bl
i

9 Compute Spectral Graph Loss from Eq. 5.11 using Bl
i

10 Backpropagate losses
11 i← i+ 1

12 end

13 end
14 return B

5.4.3 Training Phase

After the WSI images are processed as described in 5.4.1, we have two sets of 2D

image patches, one belonging to 20× magnification and another belonging to 5×

magnification. We train two models having exactly the same architecture as shown

in Fig. 5.3 for each of these two sets. In each model, deep features are first extracted

by a CNN, which are fed into b FCNs. Each FCN is trained to predict the status of a

specific bio-marker using the ML-WCE loss. Output probabilities from each FCN are

first concatenated and then binarized to produce a binary vector. This binary vector

is further used in the conditional probability based loss and spectral graph loss. The

losses are then back-propagated to the CNN and FCNs. The spectral graph loss is

calculated per sample as done in standard neural network architectures [158, 200]

whereas the conditional probability loss is calculated per batch (see Appendix). The

entire training workflow for 20×magnification, as shown in Fig. 5.3, is then repeated

for 5× magnification. The algorithm for 20× magnification is given below, which is

the same for 5× magnification. The steps in the training phase are summarized in

Algorithm 5.1.
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5.4.4 Testing Phase

During the testing phase, we extract patches at the local and global magnification

levels from a WSI image in exactly similar manner as during the training phase. We

need a single prediction for each of the b bio-markers from a WSI sample (of a patient

data). So, we first average the prediction probabilities of each local patch to obtain

the prediction vector for the test WSI [193]. Likewise, we average the probabilities of

each global patch to obtain the probability vector for the same test WSI. We finally

apply a weighted soft voting approach to combine the two results to get a single

binary output probability vector [201]. The weights are set automatically using a

modulated rank averaging technique calculated from the training accuracies of local

and global level models [202]. The testing workflow is shown in Fig. 5.4, where, we

predict a value of 1 or 0 for each bio-marker from a test WSI image. Algorithm 5.2

lists the steps for the testing phase.

Algorithm 5.2: Testing Process

Input: nl number of local image patches each denoted as I li , ng number of
global image patches each denoted as Igi

Output: b-dimensional binary prediction vector B
1 i← 0
2 j ← 0
3 while i < nl and j < ng do
4 Extract local and global features F l

i and F g
i from I li and Igi respectively

using a CNN
5 Compute b-dimensional probability vectors pli and pgi by inputting F l

i

and F g
i into b number of trained FCNs respectively

6 Compute b-dimensional binary prediction vectors Bl
i and Bg

i from and pli
and pgi respectively

7 i← i+ 1
8 j ← j + 1

9 end
10 Average all Bl

i and Bg
i to get Bl and Bg respectively

11 Perform soft voting on Bl and Bg to get B
12 return B
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5.5 Experiments

5.5.1 Data Preparation

In order to predict the presence or absence of genetic bio-markers from WSI, an

image to label correspondence is required. The Cancer Imaging Archive (TCIA) [9]

has Hematoxylin and Eosin (H&E) stained WSI images of patients from the TCGA-

GBM [203] and TCGA-LGG [204] datasets. The bio-marker information is available

from the cBioPortal repository [192]. We mapped the WSI images from TCIA with

the genetic bio-marker information for the same patient. The details of the data

preparation are presented below.

(A) Genomic Data selection and processing

Clinical and genomic information about the patients of TCGA-GBM and TCGA-

LGG dataset are available from the TCGA PanCancer Atlas dataset in the cBio-

Portal [192]. We selected samples with information available on specifically five

bio-markers, the names and different values for which are shown in Table 5.1.

(B) WSI Data selection and processing

WSI data is available in .svs format. Each file contains multiple zoom levels, cap-

turing the H&E stained tissue from various magnifications. Due to the very high-

resolution of WSI images, for example, ∼ 20000×20000×3 in our dataset, rendering

and subsequent training of deep learning algorithms on this data becomes unfeasible

even with latest Graphics Processing Units (GPUs). Therefore, we adopted a patch-

based approach inspired by the work of [193]. We divided each WSI into smaller

patches of resolution 224×224×3. We automatically selected relevant patches using

a histogram based patch selection technique as explained in Sec. 5.4.1. The overall

patch generation and selection process is shown in Fig. 5.2.

(C) Data Aggregation

We did some checks before aggregating the data. Firstly, we removed multiple

instances of the same patient from both the datasets. We selected only the latest
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Table 5.2: Table showing the counts of each type of genetic marker. The values and
ID are similar to those in the Table. 5.1

ID Value: 1 Value: 0
H 360 330
C 133 557
X 164 526
M 472 218
T 371 319

versions of samples from both datasets. Secondly, in the cBioPortal, we found

that not all patients had information about all the five bio-markers. We discarded

samples having more than 2 bio-marker data missing. For samples that had one

or two bio-marker missing, we took help from neurologists to derive the status of

those missing bio-markers, considering the type of tumor and the status of other

bio-markers. Finally, we aggregated WSI data from TCIA and bio-marker data

from cBioPortal having same patient/subject ID which satisfy the above criteria.

A repository with one-to-one correspondence is created, where, each subject ID has

one WSI image and a list (binary vector) of five elements containing information

about the presence/absence of bio-markers associated with it. The total number

of final samples is 690, among which 388 are female and 302 are male patients.

The cancer type distribution in the dataset is as follows, Glioblastoma Multiforme -

275, Oligodendroglioma - 226 and Astrocytoma - 189. The individual counts of the

bio-markers are given in Table 5.2.

(D) Dataset division

We randomly divided the cohort of 690 patients into three sets. Specifically, 483

patients (70%) were allocated for training, 69 (10%) for validation, and the remaining

138 (20%) were set aside for testing purposes.
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Figure 5.6: The AUC for each bio-marker achieved by the models in shown in
Table 5.4. The gray bands represent 95% confidence interval for the AUC of our
proposed model. The mean ROC of ML-WCE, ML-WCE + Spectral Loss, ML-
WCE + Conditional Probability Loss and the mean ROC of all combined is shown
with green, red, blue and magenta lines respectively.
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5.5.2 Experimental Settings

(A) Network Architecture

We use Kimianet [205] as the CNN for extracting histopathological features. It is

pre-trained on a vast number of histopathology images and has better prediction

performance than other popular CNNs like DenseNet [158] and EfficientNet [200].

The FCN is made with fully connected layers and dropout, followed by a sigmoid

activation function in the end. We use dropout layers to prevent over-fitting, and

each dropout layer randomly selects 10% of the nodes in the preceding layer and

makes their output 0. The final out has shape - batch size ×1 as the final output

is a binary prediction indicating the status of a bio-marker. It is passed through a

sigmoid activation function. The FCN architecture is shown in Table 5.3.

(B) Loss function parameters

We set ϕ = 0.9 in (Eq. 5.12), i.e., we keep the top k eigenvalues that have 90% of the

energy. The other parameters (Eq. 5.13) are used to control the weights (impact) of

each component of the final loss function. We tried different combinations of α, β and

γ values where each of them can have values belonging to the set [0.1, 0.2, 0.3, · · · , 1]

similar to the procedure followed in [206]. After experimentation, we have found

that α = 0.5, β = 0.2, γ = 0.3 give optimum results.

Table 5.3: Layer architecture of FCN. Each dropout layer drops 10% of the neurons
randomly.

Layer Input shape Output shape
Linear batch size x 1280 batch size x 640
Dropout (0.1) batch size x 640 batch size x 640
Linear batch size x 640 batch size x 256
Dropout (0.1) batch size x 256 batch size x 256
Linear batch size x 256 batch size x 64
Dropout (0.1) batch size x 64 batch size x 64
Linear batch size x 64 batch size x 1
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(C) Hyperparameters

The learning rate and the batch size were respectively set to 3× 10−4 and 256. We

used the Adam optimizer for optimizing the weights and trained our model for 200

epochs. We further set b = 5, m = 690, ng = 200 and nl = 2000.

(D) Computing platform and performance metrics

All the computations are done using an HP Z640 Workstation with Intel Xeon 14-

core Processor, 128GB RAM and NVIDIA Titan RTX 24GB Graphics processor.

We employed PyTorch 1.9 [161] on an Ubuntu 20.04 platform. Considering the

above hardware, the time taken to predict bio-markers from a single WSI sample

is 10.0 minutes on average. This includes the time taken to split a WSI into its

corresponding patches, running inference, and then combining the patch inference

results to get the final prediction (for the whole sample). The average inference time

for a single image patch is around 0.2 seconds.

Similar to most reported works on mutation prediction using histopathology

images ( [182, 207, 208]), we have employed AUC, Sensitivity, and Specificity as

the performance measures in this work. We additionally computed 95% confidence

intervals (CI) for the AUC.

5.6 Results

During the training phase, individual image patches are utilized to train the model.

For consistency, the same approach is followed during the testing phase. WSI of

a subject is partitioned into smaller patches. The patch level probability vector

outputs are aggregated and binarized into a WSI level binary vector, which serves

as the final prediction.

5.6.1 Ablation Study

We have conducted an ablation study to reveal the impacts of individual loss func-

tions on the prediction of each bio-marker. We have calculated the Area Under

Curve (AUC) values along with 95% CI for each bio-marker. THe AUC is derived
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Table 5.4: Ablation Study: Impacts of individual (ML-WCE) loss, pairwise (Condi-
tional Probability based) loss, and groupwise (Spectral Graph based) loss

Loss
Function

IDH 1p/19q Codeletion ATRX MGMT TERT Mean
AUC with

95% CI
Sens. Spec.

AUC with
95% CI

Sens. Spec.
AUC with

95% CI
Sens. Spec.

AUC with
95% CI

Sens. Spec.
AUC with

95% CI
Sens. Spec. AUC

ML-WCE
0.78

(0.729 - 0.812)
0.781 0.77

0.717
(0.636 - 0.771)

0.717 0.715
0.643

(0.556 - 0.715)
0.64 0.618

0.593
(0.5 - 0.654)

0.594 0.592
0.63

(0.518 - 0.763)
0.627 0.631 0.672

ML-WCE
+

Spectral Graph Loss

0.85
(0.800 - 0.912)

0.85 0.834
0.767

(0.706 - 0.859)
0.767 0.768

0.77
(0.726 - 0.824)

0.77 0.75
0.669

(0.587 - 0.751)
0.67 0.663

0.745
(0.677 - 0.822)

0.745 0.743 0.761

ML-WCE+
Conditional

Probability Loss

0.88
(0.859 - 0.912)

0.87 0.88
0.793

(0.729 - 0.859)
0.792 0.79

0.772
(0.726 - 0.824)

0.773 0.764
0.682

(0.609 - 0.751)
0.68 0.65

0.773
(0.718 - 0.821)

0.778 0.77 0.78

Composite Loss =
ML-WCE + Spectral

+ Conditional
Probability Loss

0.913
(0.879 - 0.932)

0.883 0.831
0.845

(0.812 - 0.878)
0.793 0.757

0.783
(0.735 - 0.815)

0.732 0.72
0.72

(0.696 - 0.752)
0.684 0.658

0.849
(0.829 - 0.867)

0.783 0.762 0.823

Table 5.5: Comparison of various loss functions for prediction of five genetic markers

Method IDH
1p/19q

Codeletion
ATRX MGMT TERT Mean

AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec. AUC
Hamming Loss [209] 0.764 0.713 0.723 0.717 0.683 0.672 0.643 0.617 0.623 0.598 0.572 0.581 0.738 0.724 0.731 0.692
SparseMax Loss (SML) [210] (2016) 0.847 0.84 0.791 0.798 0.748 0.723 0.73 0.71 0.684 0.631 0.632 0.62 0.729 0.687 0.664 0.747
Asymmetric Loss [189] (2019) 0.83 0.735 0.724 0.793 0.774 0.752 0.73 0.698 0.68 0.69 0.676 0.651 0.778 0.752 0.738 0.7642
Distribution Based Loss [188] (2020) 0.8 0.79 0.795 0.735 0.734 0.736 0.692 0.693 0.689 0.609 0.596 0.581 0.717 0.702 0.697 0.7106

Ours 0.91 0.878 0.81 0.835 0.77 0.73 0.778 0.72 0.71 0.719 0.68 0.63 0.845 0.75 0.75 0.817

from the Receiver Operating Characteristic (ROC) curve, which is plotted by vary-

ing the decision threshold of our model output and then plotting the True Positive

Rate (TPR) vs. False Positive Rate (FPR) at each threshold. In the first model,

we use only the ML-WCE loss function. This serves as a base model. In the sec-

ond model, we combine ML-WCE loss, and, Spectral Graph Loss. The third model

replaces Spectral Graph Loss with conditional probability loss. In the final model,

all three loss functions are combined. As can be seen from Table 5.4, the proposed

model, which combines all the loss functions, achieves the highest AUC for all five

bio-markers compared to the previous three combinations. We also show the mean

AUC for each model. It is important to note that each loss function individually

improves the mean AUC from the base ML-WCE model, which indicates that each

loss function contributes significantly to the overall improvement. Fig. 5.6 further

conveys this message in a qualitative manner. From the figure, we can further con-

clude that MGMT prediction is challenging, as all the models performed below par

in predicting MGMT.

5.6.2 Comparison of Loss Functions

We have compared our loss function with other reported works on multi-label image

prediction using different loss functions. Although, these works used nonmedical
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Table 5.6: Comparison with state-of-the-art. AUC, Sensitivity (Sens.) and Speci-
ficity (Spec.) values are given, as per availability. Best values are highlighted in
bold.

Method IDH
1p/19q

Codeletion
ATRX MGMT TERT Mean

Single bio-marker prediction

AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec. AUC
Liu et al. [186] (2024) 0.886 0.793 0.755 -
Liu et al. [14] (2020) 0.927 0.889 0.813 - -
Liechty et. al. [185] (2022) 0.870 0.76 0.709 -
Kocak et al. [181] (2019) - 0.838 0.877 0.675 - -
Faghani et al. [180] (2023) - 0.65 0.712 0.589 - -
Saeed et. al [179] (2022) 0.53 - - -
Mora et al. [211] (2023) - 0.831 0.772 0.697 - -

Ours 0.913 0.883 0.831 0.845 0.793 0.757 0.783 0.732 0.72 0.72 0.684 0.658 0.849 0.783 0.762 -

Two bio-markers prediction

Zhou et al. [182] (2019) 0.916 - - 0.716 - - - - - - - - - - - 0.816
Nishikawa et al. [183] (2023) 0.814 - - 0.771 - - - 0.7925
Tripathi and Bag [168] (2023) 0.919 0.909 0.934 0.878 0.895 0.915 - 0.8985

Ours 0.913 0.883 0.831 0.845 0.793 0.757 - 0.879

Five bio-markers prediction

Xiao et al. [212] (2023) 0.812 0.784 0.767 0.736 0.712 0.698 0.685 0.675 0.691 0.673 0.614 0.605 0.793 0.755 0.741 0.74
Weng et al. [213] (2023) 0.913 0.854 0.817 0.823 0.807 0.813 0.772 0.746 0.712 0.697 0.641 0.623 0.824 0.795 0.786 0.8058
Densenet [158] 0.71 0.7 0.72 0.683 0.62 0.61 0.56 0.57 0.524 0.499 0.48 0.52 0.657 0.58 0.53 0.6218
Efficientnet (b0) [200] 0.739 0.74 0.71 0.631 0.68 0.623 0.6 0.64 0.59 0.557 0.58 0.547 0.588 0.64 0.6 0.623

Ours 0.913 0.883 0.831 0.845 0.793 0.757 0.783 0.732 0.72 0.72 0.684 0.658 0.849 0.783 0.762 0.823

data, the modality is still 2D images like ours. Apart from a generic multi-label

loss function, like Hamming loss [209], we re-implemented Asymmetric Loss [189],

Distribution based Loss [188] and the best performing loss function - SpareMax Loss

(SML) [210] from [190]. Table 5.5 shows that our proposed approach outperforms

the above works, thereby further reinforcing the need of developing a loss function,

which can faithfully capture all the intricacies like individual, pairwise, groupwise

behavior of the bio-markers.

5.6.3 State-of-the-art Comparisons

In Table 5.6, we have compared our work with state-of-the-art works on bio-marker

prediction. Note that most of these methods predicted only one bio-marker. We first

compare our multi-label prediction results, which is much more challenging against

works that have done single bio-marker prediction. Among these works, most of

them have attempted to predict IDH mutation status because this is one of the

most crucial bio-markers for glioma tumor diagnosis. It is true that Liuet al. [14]

marginally outperformed us in IDH detection using WSI data. Nevertheless, it is

important to mention that a binary prediction task is easier than that of a multi-label

prediction. Kocaket al. [181] attempted to identify the 1p/19q codeletion status in
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which we outperform them in terms of AUC and specificity. We found two works

that attempted MGMT status prediction. Out of these two methods, we outperform

Saeed et al.’s work [179] by a huge margin. We lag slightly behind sensitivity of

MGMT status prediction of [180], but outperform them on AUC, which represents

the overall performance of any model. Although Moraet al. [211] surpasses our

ATRX detection, they incurred additional computational cost in model training for

brain tumor segmentation followed by radiological features from it. Since, we have

used WSI, no such extra computation is required. We did not find any work that

attempted to identify TERT mutation status, which is an important bio-marker for

tumor prognosis. It is natural to expect that the multi-label performance would not

be able to exceed single bio-marker prediction performance. But for proper diagnosis

and prognosis of brain tumors, information on multiple bio-markers is collectively

required [214], which renders the attempt to predict the status of just one bio-marker

unsuitable for a real clinical scenario.

We then list some works that have attempted to identify the status of two bio-

markers - IDH and 1p/19q codeletion. We did not find any works that have tried

to delve into simultaneous prediction of the status of other bio-markers like ATRX,

MGMT and TERT. Zhouet al. [182] targeted prediction of two bio-markers - 1p/19q

and IDH. Here, we lose in the IDH prediction extremely marginally; but, our overall

mean is quite better in comparison. Nishikawaet al. [183] also attempted to predict

the same set of bio-markers, we outperformed them by a big margin. Tripathi

and Bag [168] obtained better results in both IDH and 1p/19q codeletion status

prediction. However, their method is not suitable for prediction of other bio-markers,

as discussed in Sec. 5.2. Also, they had to segment the tumor region first before

attempting to identify bio-markers as only the tumor region has features related to

the correct bio-marker status of the patient while the rest of the healthy brain region

has a different bio-marker status and learning from the entire brain scan would thus,

confuse the model. Segmenting the tumor required additional computational burden

and processing times, which is not needed in WSI based prediction models like ours.

Finally, we compared our work on five-class multi label prediction with some
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state-of-the-art methods on multi-label prediction. Since, to the best of our knowl-

edge, our work is the only work that targets simultaneous multi-label prediciton of

IDH, 1p/19q codeletion, TERT, ATRX and MGMT status, we had to compare our

method with similar methods but solving a different problem. We re-implemented

Xiao et al.’s work [212] that performs a similar task of multi-label classification on

our dataset and found that the performance is not up to the mark as they have

focused on learning image features without paying attention to the label correlation.

We also compared our work with another work that focus on label correlation [213]

by re-implementing it on our dataset and found that it lags behind our results. We

have further included comparisons with other baseline models, namely, DenseNet

and EfficientNet, both of which are pre-trained with ImageNet [215] and fine-tuned

only in the last FCN layer using a binary cross-entropy loss function. The results

clearly establish the supremacy of our method. Overall, we can see that our pro-

posed method outperforms multi-label prediction models and also a few single label

prediction models. We have also achieved the highest mean AUC value.

5.7 Time Complexity Analysis

In this section, we analyze the time complexity of our proposed method. Our so-

lution pipeline consists of mainly three components - the deep network consisting

of a CNN backbone connected to five FCNs from which the weighted cross entropy

losses are calculated, the conditional probability loss calculation unit and the spec-

tral graph loss calculation unit. The complexity analysis focuses on the dominant

computational operations involved in their calculations.

5.7.1 Time complexity of CNN and FCNs

We have used Kimianet [205] as the CNN backbone which is based on the DenseNet-

121 architecture. Using Eq. 2.16 defined in Sec. 2.3.1 of Chapter 2, we can derive

the time complexity for a 2D DenseNet-121 model having 120 convolutional layers
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as-

TDCNN = O

(
120∑
n=1

kn−1 · s2n · fn · l2n · r1 · z

)
(5.14)

where d is the number of convolutional layers, ln is the length of the output feature

map in the nth layer, fn is the number of filters in the nth layer, sn is the filter size

in the nth layer, kn−1 is the number of input channels, r1 is the learning rate, z is

the batch size.

We use five FCNs after that. The time complexity of 2D FCN has already been

defined in Sec. 2.3.2 (See 2.19. Hence, the cumulative time complexity of 5 FCNs

each having 3 FC layers can be written as-

TDFCN = O

(
5 ·

3∑
l=1

C ·W ·H ·N

)
(5.15)

where C is the number of input channels, W is the width of the input, H is the height

of the input, N is the number of neurons. Thus, combining TDCNN and TDFCN , the

overall time complexity for the deep learning model can be written as-

Tnet = TDCNN + TDFCN

= O

(
120∑
n=1

kn−1 · s2n · fn · l2n · r1 · z

)
+O

(
5 ·

3∑
l=1

C ·W ·H ·N

)

= O

(
120∑
n=1

kn−1 · s2n · fn · l2n · r1 · z + 5 ·
3∑
l=1

C ·W ·H ·N

) (5.16)

5.7.2 Complexity of Conditional Probability Loss (LP)

The key computational steps in calculating the conditional probability loss are as

follows-

1. Computation of Conditional Probabilities:

Given b biomarkers, the number of possible biomarker pairs is O(b2). For

each pair, conditional probabilities are estimated from the dataset, which in-

volves counting occurrences over m samples. This step has a computational

complexity of O(b2m).
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2. Loss Computation:

The loss function is defined as the absolute difference between estimated and

ground-truth probabilities. Since only a fixed number of biologically significant

biomarker pairs (denoted as c) are selected, this step has a complexity of O(c),

where c≪ b2.

If all possible pairs of biomarkers were considered, the worst-case complexity

would be O(b2m). However, given that only a constant number of pairs (c) are

selected based on expert recommendations, the overall complexity simplifies to:

O(m) (5.17)

Thus, the computational cost of the conditional probability loss is primarily depen-

dent on the number of samples in the dataset.

5.7.3 Complexity of Spectral Graph Loss (LG)

The major steps in computing the spectral graph loss are as follows:

1. Graph Construction

A complete weighted graph G is constructed from the predicted biomarker

values, where each vertex represents a biomarker, and edges encode biomarker

affinities. The adjacency matrix A of size b × b is computed using Eq. (5.9),

leading to a complexity of O(b2).

2. Graph Laplacian Computation:

The degree matrix D and normalized Laplacian matrix L = I −D−1/2AD1/2

are computed. Constructing the degree matrix requires summing the rows of

A (O(b2)), while obtaining the normalized Laplacian matrix involves matrix

multiplications, leading to a complexity of O(b3).

3. Eigenvalue Decomposition: The top k eigenvalues of the Laplacian matrix are

computed, where k is chosen such that it captures a fixed proportion (ϕ) of the

spectral energy. Eigenvalue decomposition for an b×b matrix has a complexity

of O(b3).
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4. Loss Computation:

The spectral loss is computed as the squared difference between the top k

eigenvalues of the predicted and ground-truth graphs. This step has a com-

plexity of O(k), where k < b.

The dominant term in the complexity analysis is the eigenvalue decomposition

step, which has a computational complexity of:

O(b3) (5.18)

Thus, the spectral graph loss is computationally more expensive than the conditional

probability loss, particularly as the number of biomarkers (b) increases.

5.7.4 Overall Time Complexity

Combining the time complexities of CNN, FCN, conditional probability loss and

spectral graph loss, we arrive at the final time complexity of our pipeline below-

Tfinal = Tnet +O(m) +O(b3)

= O

(
120∑
n=1

kn−1 · s3n · fn · l3n · r1 · z + 5 ·
3∑
l=1

C ·W ·H ·N

)
+O(m) +O(b3)

= O

(
120∑
n=1

kn−1 · s3n · fn · l3n · r1 · z + 5 ·
3∑
l=1

C ·W ·H ·N +m+ b3

)
(5.19)

5.8 Summary

This chapter introduces a novel approach to simultaneously predict five genetic

markers—IDH, 1p/19q codeletion status, ATRX, MGMT, and TERT—from WSI

data, improving prognosis and treatment planning for brain tumors. Our method

leverages individual, pairwise, and groupwise traits of these bio-markers, integrating

conditional probability-based loss for pairwise information, spectral graph-based loss

for group behavior, and multi-label weighted cross-entropy loss for individual traits
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into a composite function. We also created a benchmark dataset combining WSI

and bio-marker data, which shows state-of-the-art performance in experiments.
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Chapter 6

Alzheimer’s Disease Classification

The development of computer vision techniques for early Alzheimer’s diagnosis is es-

sential for detecting subtle brain changes at preclinical stages, enabling timely inter-

ventions that can delay cognitive decline and improve patient outcomes. These tech-

niques offer a scalable, non-invasive, and cost-effective solution, making widespread

screening feasible and advancing research in neurodegenerative diseases. Ultimately,

this work is critical in the global effort to mitigate the impact of Alzheimer’s Disease.

6.1 Introduction

Alzheimer’s disease (AD) is the most common type of dementia, accounting for

about 60% to 70% of the total number of dementia cases in the World. This deadly

disease is caused by the damage and destruction of nerve cells in the brain regions

related to memory, and its most common symptoms are memory loss and cognitive

decline. Worldwide, around 50 million people have dementia, and there are nearly

10 million new cases every year. Globally, the current number of AD and dementia

patients is at least 55 million. At this rate, it could exceed 152 million by 2050 [216].

According to data from [217], the number of older persons — those aged 65 years or

over — is expected to more than double by 2050 and to more than triple by 2100,

rising from about 700 million globally in 2019 to 1.8 billion in 2050 and 2.45 billion in

2100 as shown in Fig. 6.1. Currently, there is no treatment available to cure AD or

to alter its progressive course. However, in order to support and improve the quality
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of lives of AD patients, the treatment process has a big scope of improvement. Early

detection and diagnosis is a major goal for dementia and AD care. AD has generally

three major stages of progression-

1. Early Mild Cognitive Impairment (EMCI)

2. Late Mild Cognitive Impairment (LMCI)

3. Alzheimer’s Disease (AD)

Along with the above three AD stages, we have one more class - Normal Control

(CN), i.e., those who have no symptoms of AD, LMCI or EMCI. So the main task

is to classify a brain scan into one of the four major AD classes. Previous efforts of

classification were mainly focused on binary classification, i.e., to develop algorithms

to classify between any two classes, for example, between AD and CN, between LMCI

and CN, between EMCI and CN, and so on. Although it was easy to differentiate

among only two types of data, but it was more time-consuming to determine the

actual class as one would have to eliminate each class by making multiple binary

comparisons until the final class is reached. In this work, we for the first time

address a direct four-class classification problem related to AD. clearly, this task is

significantly more challenging than single or multiple binary classification(s) as the

differences among all four classes is not very distinct.

For the diagnosis of dementia, use of Magnetic Resonance Imaging (MRI) has

been quite common. MRI can create a 3D representation of the internal brain

structure through magnetic fields and radio waves, It offers the possibility of in-

vivo study of pathological brain changes associated with AD. Currently, Diffusion

weighted MRI (DWI or DW-MRI) is the standard version of MRI which is used in

clinical diagnosis worldwide. It uses the diffusion of water molecules to generate

contrast in MR images. Building upon DWI, DTI has gained popularity as it is able

to capture the directions of water molecule diffusion, thus providing a lot more data

about brain tissue structure than conventional MRI [218]. This extra information

from DTI scans have opened avenues for a wide range of neurological applications,

detecting AD is one of them.
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Figure 6.1: Estimates and probabilistic projections of population of people aged 65
years and above in the world

Over the past decades, neuroimaging data have been used to characterize AD by

exploiting machine learning (ML) met-hods, offering valuable tools for diagnosis and

prognosis [219,220]. Many studies have proposed the use of predefined features (in-

cluding regional and voxel-based measurements) obtained from image preprocessing

pipelines along with different types of classifiers, namely, support vector machines

(SVM) or random forests. In recent times, deep learning (DL), a more advanced and

complex ML methodology, has created a compelling effect in the domain of medi-

cal imaging. The main advantage of DL over ML is that it allows the automatic

abstraction of low-to-high level latent feature representations (e.g. lines, dots or

edges for low level features, and objects or complex shapes for high level features).

Compared with 2D convolutions on slices, 3D convolutions on a whole MRI can

capture potential 3D structural information, which may be essential for discrimi-

nation and has proved to be advantageous on AD vs. Mild Cognitive Impairment

(MCI) classification [221]. Also, it is important to note that datasets collected in

neuroimaging studies are generally very small, compared to the large number of im-

ages available in datasets for image classification which are currently used to train
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neural networks for object classification and detection in 2D image analysis. This

leads to relatively lower accuracies, as there are not enough training examples for

the network to learn the required features. This is mitigated by various techniques

like data augmentation, feature fusion and decision fusion.

In this chapter, we present a solution for the above four-class AD classification

problem by combining DL and ML models on 3D DTI scan volumes. The DTI data

is publicly available at the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

website, which has been discussed elaborately in section 6.6.1. As we demonstrate

in the chapter, different types of data existing in DTI can be efficiently utilized when

separate DL and ML models are applied. We use 3D-CNN, specifically VoxCNN, as

the DL model in this work as it has shown good performance on MRI data [155]. We

employ three VoxCNNs to train three types of 3D volumetric data, namely, Echo

Planar Imaging, Fractional Anisotropy and Mean Diffusivity in each DTI scan. For

the ML part, we apply a random forest classifier to classify derived metadata in the

form of region-averaged Fractional Anisotropy and Mean Diffusivity values. Outputs

from all the four models, i.e., three VoxCNNs and the random forest classifier, are

finally combined with a modulated rank averaging decision fusion approach.

6.2 Related Work

Use of medical imaging for solving classification problems has been popular for a long

time. Classification is critical for clinicians to ensure proper diagnosis of a disease.

Neuroscience has many such applications of classification, where neuroimaging has

been extensively used. Some prominent examples include brain tumor classification

[222], texture classification in ALS disease [223] and AD classification [22, 224]. As

stated earlier, our solution for the four-class AD classification is based on fusion

of DL and ML techniques. In this section, we mainly discuss the prominent DL

and ML methods and the associated fusion strategies for solving such problems.

Shortcomings of the existing strategies are also analyzed, revealing the importance

of our proposed algorithm.
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6.2.1 Machine Learning (ML) methods

We first discuss about the existing ML techniques that have attempted to classify

AD. Extracted bio-markers and processed medical descriptors, together with statis-

tical and conventional ML methods, have been widely used to aid the classification

of AD. In [225], the authors have extracted 83 Regions of Interest (ROI)s from 3D

brain MRI and Positron-emission tomography (PET) scans, and proposed a Multi-

fold Bayesian Kernelization (MBK) to diagnose AD. A Support Vector Regression

(SVR) based decision support system was developed by Bucholc et al. [226] which

achieved a good accuracy. We use classical ML approach like Random Forest Clas-

sifier for only a part of our proposed method, as it has limited feature extraction

capabilities. However, a part of the DTI data is best handled by the Random Forest

Classifier as the data contains numerical features with overlapping and very close

values (linearly inseparable) making it less effective for Support Vector Machines.

Further, since this part of the data has no spatial correlation, DL methods are not

suitable for handling them.

6.2.2 Deep Learning (DL) Methods

Now, we discuss certain DL methods which have been widely used in computer-aided

diagnosis literature. Ramaniharan et al. [227] used 2D slices of MRI scans to perform

AD classification based in eigen values, parametric and non-parametric classifiers.

Raza et al. [228] used a mix of ML and DL approaches to classify AD. Although,

ROI-based and 2D slice-based methods can efficiently extract relevant features and

partly reduce the feature dimension, they are too empirical to capture the critical

features which are associated with AD classification. In contrast, 3D-CNN can cap-

ture more complete spatial features through its space association capability. Cheng

et al. [229] extracted a number of 3D patches from the whole MRI and transformed

those patches into features by 3D-CNN. Finally, multiple 3D-CNNs were used to

combine the features yielding better results for AD classification which inspired us

to use DTI data similarly. We also took inspiration from the work of [230] where

they used Random forest ensembles to detect AD and predict progression from MCI
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to AD. We used Random forest for training, a type of derived data obtained from

the DTI scans. Although supervised DL methods work better than the unsupervised

methods, they are highly data dependent. The performance of the model depends

on the number of training data available and in most neuroimaging domains, the

number of data is found to be insufficient to make a model highly accurate and

effective. To address this challenge we found DTI data to be useful as each scan has

3 3D volumetric images increasing the number of data three-fold and also derived

information about each brain region is available which can also be utilized using

machine learning methods for classification task.

6.2.3 Data fusion techniques

Data fusion has been used from a long time since 1990s [231]. Gaining improved

information with less error possibility in detection or prediction and superior reli-

ability can be considered as the goal of fusion. Similar or multi-modal data can

be fused in many ways and such strategies have been shown to be very effective in

particular cases of intrusion and malware detection, prediction in traffic systems,

pattern recognition, face identification, and in biomedical domains including analy-

sis of genetic subgroups in inherent AD [232]. Data fusion technology has improved

with the advent of machine learning algorithms, as shown in the survey [233]. There

are mainly two types of data fusion, namely, feature fusion and decision fusion. Fea-

ture fusion is the fusion of features already available in the data or fusion of deep

features extracted from different DL models. Decision fusion, on the other hand,

marks fusion of decisions, i.e., outputs of different models, in such a way that the

final output is more accurate than the individual model outputs. Fusion is mainly

done in cases where there are multi-modal data available for the same object at

the same time. Many DL networks have been developed for such purpose like [234]

where the models are first trained for each type of data and later fused to obtain

an output. We follow a similar strategy. However, we have combined DL and ML

models on separate information in DTI data and designed a new decision level fusion

strategy in this work.
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As a summary, we can say that AD classification works till date deal with binary

classification problems and are mostly restricted to using MRI or PET data. Due to

less number of available data and less information in MRI or PET data, satisfactory

accuracy for multi-class classification could not be achieved. By exploiting multiple

types of data available in DTI, creating appropriate DL and ML models for them

and finally fusing the individual outputs at decision level, we have obtained in this

work state-of-the-art performance for a four-class AD classification problem.

6.3 Contributions

Our main contributions are now summarized below:

1. We address for the first time a direct four-class classification problem in AD,

which is significantly more challenging than the pre-existing single or multiple

binary classification(s).

2. We efficiently harness the full potential of DTI scans by applying appropriate

DL and ML models in 3D for different types of information existing in them.

This detailed exploration of DTI data and that too in 3D is largely absent in

the prevalent literature.

3. Finally, outputs of each learning model are combined at the decision level

using a modulated rank averaging technique, thereby achieving state-of-the-

art classification accuracy.

6.4 Basics of Diffusion Tensor Imaging

DTI is able to capture white-matter (WM) tracts in the brain while MRI is only

limited to grey-matter (GM) visualizations. Alterations in WM diffusivity on DTI

are known to be associated with clinical disease severity starting from the pre-clinical

stages of AD. The WM integrity on DTI and its importance has been discussed in

details in [235]. Hence DTI is a preferred choice for studying AD as it can capture

both GM and WM information.
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Figure 6.2: Axial FA map of a DTI scan from the ADNI dataset.

We now explain briefly about its mathematical motivation. DTI is a sensitive

probe of cellular structure that works by measuring the diffusion of water molecules

[27] inside living tissues. Since the diffusion tensor is a symmetric 3 × 3 matrix,

it can be described by its eigenvalues (λ1, λ2, λ3) and eigenvectors (e1, e2, e3). The

eigenvalues and eigenvectors are then used to process scalar indices and, in some

studies, tractography analysis [236]. At each voxel, the eigenvalues represent the

magnitude of diffusion and the corresponding eigenvectors reflect the directions of

maximal and minimal diffusion.

Generally, each DTI scan contains Echo Planar Imaging (EPI) volume in 3D,

and some diffusion tensor information at each voxel which can be used to generate

Fractional Anisotropy (FA) and Mean Diffusivity (MD) volumes which are also in

3D. In the dataset that we used, FA and MD volumes were already available along

with the EPI volume. The voxel intensities acquired from the MRI scan are stored

in the EPI volume. The two main diffusion indices, FA and MD, are based on the

eigenvalues, which represent the magnitude of the diffusion process.
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6.4.1 Mean diffusivity

MD is a summary measure of the average diffusion properties of a voxel and is equiv-

alent to the estimated Apparent Diffusion Coefficient (ADC) over three orthogonal

directions [237]. In other words, it is a measure of the mean water diffusion rate. MD

values of the voxels differ for brain scans belonging to different classes of Alzheimer’s

and also differ in normal healthy brains. An increase in MD indicates decreased

myelination and loss of axons [238]. It can be mathematically represented as-

MD =
λ1 + λ2 + λ3

3
=
Dxx +Dyy +Dzz

3
=
Trace

3
(6.1)

where Dxx, Dyy, Dzz are the diagonal terms of the diffusion tensor.

6.4.2 Fractional anisotropy

FA is a normalized measure of the fraction of the tensor’s magnitude due to

anisotropic diffusion, corresponding to the degree of anisotropic diffusion or direc-

tionality and ranges from 0 (isotropic diffusion) to 1 (anisotropic diffusion). Just

like MD, decreased FA values are indicative of dementia and Alzheimer’s. FA values

are rotationally invariant, i.e. they do not have any orientation information. It can

be mathematically expressed as-

FA =

√
3

2

√
(λ1 −D)2 + (λ2 −D)2 + (λ3 −D)2

λ1
2 + λ2

2 + λ3
2 (6.2)

where D = λ1+λ2+λ3
3

. FA maps are color coded where a certain direction is rep-

resented by a color. In these maps, red color represents left-to-right orientation,

green posterior-to-anterior and blue inferior-to-superior diffusion as shown in Fig.

6.2 which has been generated with the 3D Slicer tool (version 4.10.2) [239,240].

6.4.3 Echo Planar Imaging

EPI is the fastest imaging sequence currently available and has the potential to

revolutionize many aspects of MRI technology. It is a rapid MRI technique that is

capable of producing tomographic images at video rates. It is a single-shot method
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Figure 6.3: Axial slices of two patients. (a), (b) (c) denote the EPI, FA and MD
maps slices of AD patient respectively and (e), (f), (g) denote that of healthy person.
EPI and MD shows the WM in black, while FA shows the WM in white. We can
see that in AD patient the total WM region in lesser than normal person which is
clearly indicated by the larger size of lateral ventricle body in AD patient
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having imaging times ∼ 100ms for a 128× 128 matrix.

In a single-shot echo planar sequence, the entire range of phase encoding steps,

usually up to 128, are acquired in one shot. In multi-shot echo planar imaging, the

range of phase steps is equally divided into several shots. Each subsequent echo

results in a progressively T2-weighted signal. We use DTI images with this EPI

standard in our experiments.

6.4.4 Significance of Fractional Anisotropy and Mean Dif-

fusivity

AD results in the loss of neurons in the brain and this neuronal degeneration can

be seen as a loss of both GM and WM. Loss of neurons in certain areas of the brain

results in GM atrophy that can be measured on conventional MR images. Increased

MD was consistently found in the areas such as the hippocampus, the entorhinal

cortex, the parahippocampal gyrus, the temporo-parietal association cortex, and the

posterior cingulate gyrus [241].

Majority of the published AD research has used a cross-sectional design and

consistently revealed low FA and high MD in widespread WM regions including the

frontal, parietal, and temporal lobes (including hippocampal regions), as well as the

corpus callosum and longitudinal association tracts) [238]. Thus FA and MD are

clear biomarkers and their values indicate which stage of AD the patient is in. This

can be seen in Fig. 6.3 where EPI, FA and MD slices of two different patients, one

with AD and one healthy, are shown with visible difference in brain WM structures.

These unique traits of DTI have motivated us to explore this imaging modality for

a four-class classification of AD. So, we decide to apply and combine appropriate

classifiers on the DTI data to achieve the above goal.

6.5 Proposed Method

Our solution pipeline consists of three VoxCNN networks and one random forest

classifier, each of which outputs a 4× 1 probability vector. Each probability vector

contains the probabilities for the data to be in the four classes, namely, AD, CN,

138



Chapter 6 Alzheimer’s Disease Classification

Figure 6.4: Solution pipeline architecture: Ce, Cfa, Cmd and Crfc denote the proba-
bility vectors of EPI, FA, MD and RFC models respectively, each of which contains
the probabilities of the four AD classes; Finally, Pis denote the probabilities for the
four AD classes after applying modulated rank averaging. max(C) gives the highest
value among the Pis which corresponds to the AD classes. For example, if the out-
put of max(C) is P2, then the AD class corresponding to label 2 is the classification
output.
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EMCI and LMCI. The probability vectors are then linearly combined by ranking

the models based on their accuracy. In particular, we multiply each vector with

a weight which is proportional to the rank of the corresponding model and the

difference in accuracy between the corresponding model and the model which is

rank-wise immediately next to it. We present a schematic of our solution in Fig.

6.4. An algorithm showing the details of the fusion strategy is shown in Algorithm

6.1. We end this section with another algorithm (Algorithm 6.2) where all the steps

of our solution are mentioned. We now provide detailed descriptions of our DL

models, ML models and the modulated rank averaging technique for decision level

fusion.

6.5.1 VoxCNN

VoxCNN architecture has four volumetric convolutional blocks for extracting fea-

tures (with a number of filters increasing from layer to layer), two deconvolutional

layers with batch normalization and dropout for regularization and an output with

SoftMax nonlinearity for classification. We have kept the network architecture as

it is defined in the article [155]. The input files are in nifti format, and they are

normalized between 0 and 1 for keeping similarity among all models. This data pre-

processing part has been done with the nilearn and Scikit-learn packages [242,243].

Considering the dataset size, model size and the limitations of GPU memory, we

modified the batch iteration process in order to get samples of each class in every

batch. The reason being that the probability of having only one class represented in-

side a batch for infinite number of samples is 1
cb

where c is the number of classes and

b is the batch size. Therefore, for large batch sizes this probability is low. However,

for our problem, it is high enough to thwart the learning process. Balancing of the

samples inside each batch was hence undertaken to obtain stable learning curves.

6.5.2 Random Forest Classifier

Random forest classifier (RFC), an ensemble of decision trees [74] is chosen for its

very high accuracy and capability to handle large volume of data. Random forests
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are well suited for multi-class classification, they do not tend to overfit, can han-

dle outliers well and has fewer number of parameters to tune [244] as compared to

other state of the art classifiers like Gradient Boosting Machines (GBM) [245], XG-

Boost [246], etc. Also, they are resilient to outliers and clinical data is often prone

to outliers [247]. Each DTI scan comes with averaged FA values of 57 regions and

averaged MD values of the same 57 regions, which is derived from the images and

is not actually image data. Hence, we can say that we are performing classification

based on meta data in tabular format. Although neural networks can perform clas-

sification on tabular data, it is more complex in terms of setting up the model and

hyper-parameter tuning, and also it is computationally expensive, whereas RFCs do

not need a lot of memory resources and the training can be parallelized in a multi-

core processor that greatly speeds up the training process which is a very crucial

factor in the field of medical imaging where online and in-situ measurements are

indispensable [248]. In order to use all available information from each DTI scan

and considering the suitability of DL for volumetric image data and RFC for tabular

meta data, we have used RFC along with VoxCNN to arrive at the best possible

outcome. Each feature value in the meta data is a real number in [0, 1]. Thus, RFC

is employed (code available at [243]) to randomly select a subset of features from

the total feature set to arrive at a suitable classification decision. RFC votes for the

most popular class among the individual trees. The information gain I for the jth

node in a decision tree is given by-

I = H(Sj)−
∑
i=L,R

|Sij|
|Sj|

H(Sij) (6.3)

where H(Sj) denotes the entropy of the jth node Sj. The entropy of a node for a

discrete set of C labels c = 1, 2, · · · , C is given by:

H(Sj) = −
∑
c∈C

p(c)log2(p(c)) (6.4)

Further, |Sj| denotes the number of training images in the node Sj. So, |SLj | and

|SRj | respectively represent the number of data in the left child and the right child
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of the node Sj. However, before the data is fed into the RFC, it goes through a set

of pre-processing steps described below.

(A) Synthetic Minority Oversampling Technique

Since the data is class imbalanced, Synthetic Minority Oversampling Technique

(SMOTE) sampling [249] has been used which generates excellent synthetic sam-

ples from the data and re-samples all classes to match the number of samples in the

majority class.

Let xij be the value of jth variable (j = 1, . . . , p) for the ith sample (i = 1, . . . , n)

that belongs to class c(C = 4) in our case. Let, kc = nc

n
is the proportion of samples

from Class c, nc is the number of samples in class c and n is the total number of

samples. Further, let the sample size of the minority class be denoted by nmin. We

would limit our attention to G ≤ variables that are the most informative about

the class distinction. We use Capital letters (as X) to denote random variables,

lowercase letters (as x) to denote observations and bold letters (x) to indicate a set

of variables. The Gaussian distribution with mean µ and standard deviation σ is

indicated with N(µ, σ) and the uniform distribution is defined on [0, 1] with U(0, 1).

For each sample from the minority class (x), 40 (or nmin−1 if nmin ≤ 5) samples

from the minority class with the smallest Euclidean distance from the original sample

were identified (nearest neighbors) and one of them was randomly chosen (xR). The

new synthetic SMOTE sample was defined as-

SSS = X + u · (xxxR − xxx) (6.5)

where u was randomly chosen from U(0, 1). Note that u is same for all variables,

but different for each SMOTE sample.

(B) Spatially Uniform ReliefF

Spatially Uniform ReliefF (SURF) identifies the nearest neighbors (both hits and

misses) based on a distance threshold from the target instance defined by the average

distance between all pairs of instances in the training data. Since, there are 114
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continuous valued features in the data which are very similar to each other, having

values between 0 and 1, it is quite challenging to classify the data. Hence, SURF [250]

is used to select the top 50 best features among the 114 features, which improves

the accuracy of classification.

6.5.3 Modulated Rank Averaging based decision level fusion

In traditional majority voting method, the prediction results of majority of the

classifiers are used as the final prediction labels. Since, each classifier is independent

and the error rates between different classifiers are irrelevant, such strategy can be

useful. However, for multi-class classification tasks, this method may not be very

effective. Single classifiers perform well on most subjects; but for some subjects

which are difficult to classify, the error rates will be increased due to the uncertainty

among multiple categories. Let us take the following example with three classifiers.

The four-class output probabilities from the SoftMax layer of these three classifiers

for {AD, EMCI, LMCI, CN} are respectively given by I: {0.7, 0.05, 0.2, 0.05}, II:

{0.3, 0.5, 0.1, 0.1}, III: {0.2, 0.4, 0.3, 0.1}. Based on the majority voting method,

the prediction result is EMCI. But this inference is not completely correct, since the

prediction result of classifier I is more credible (the winner is predominant) while

that of classifiers II and III have more uncertainties (differences between the winner

class and other classes are not that high).

In our approach, we use a weight adjusted probability vector fusion technique

along with ranking of the classification models based on their individual accuracy.

Our approach deals with applying a different weight for each network. Networks

that had a lower classification error in the training set will have a larger weight

when combining the results for each image from the test set. The algorithm for our

proposed method can be seen in Algorithm 6.1.

LetRn be the n-dimensional feature space. Suppose, X = [x1, x2, . . . , xn]T be the

n-dimensional feature vector, X ∈ Rn, Ω = [ω1, ω2, . . . , ωm] be the set of potential

class labels and C = [C1, C2, . . . , Cl] be the set of trained models for decision fusion.
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Given the input pattern X , the output of the ith model is denoted as-

Ci(X ) = [Pi,1(X ), Pi,2(X ), . . . , Pi,m(X )]T (6.6)

where Ci,j(X ), i = 1, 2, . . . , l j = 1, 2, . . . ,m represents the probability that X

belongs to class ωj. Basically, Ci(X ) denotes the probability vector of model Ci. In

our case l = 4 as there are 4 models and m = 4 as there are four classes. The fused

output of l models is constructed as in:

C(X ) = F [C1(X ), C2(X ), ......, Cl(X )] (6.7)

where F is the fusion rule described below. Given some input data, the output

probability vectors from all CNNs and one RFC are multiplied by a weight α before

the prediction. So, for a given input X , the output probability vector C(X ) is given

by:

C(X ) =
l∑

j=1

αjCj(X ) (6.8)

where Cj(X ) is the output of the network j for a given input X .

The weight αj is primarily chosen by rank of the trained models. It is based

on the order of accuracy in the validation set (the test fold in case of K-Fold cross

validation) but the relative differences in accuracy of each model are taken into

account. Let R() be the function that gives the position of the model based on

validation accuracy, sorted in increasing order. For example, the model with the

largest accuracy will have a R() value of m, where m is the number of classes (m

= 4 in our case). The model with the second largest accuracy will have R() a value

of, (m − 1) and so on until the model with the lowest accuracy will have R() = 1.

Let, d1, d2, . . . , dl−1 be the differences in validation accuracies of l models which are

themselves sorted in ascending order of validation accuracy. In our case, we have

four models. Let their validation accuracies, after being trained on the full dataset,
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Algorithm 6.1: MRA(Accuracy)

Input: Evaluation Accuracy of each model as Accuracy[A1, A2, . . . , Al]
Output: Weight for each model as Weights[α1, α2, . . . , αl]
/* Store the original accuracies in AccRanks so that values in

Weights can be in the same order as Accuracy */

1 AccRanks = Accuracy
2 sumfactors = l
// l = 4 in our case

3 Sort the Accuracy array
4 rank ← l
5 foreach acc in Accuracy do // Iterate through the sorted

accuracies

6 for i← 1 to l do
7 if acc = AccRanks[i] then /* If accuracy value equals ith

index, then store the rank at the ith index */

8 AccRanks[i]← rank
9 rank = rank − 1

10 end

11 end

12 end
13 for j ← 1 to l − 1 do
14 dj ← Accuracy[l − j + 1]− Accuracy[l − j]
15 fj = l − j + (1− dj)
16 sumfactors = sumfactors + fj
17 end

18 Weights[1]← l
sumfactors

19 for i← 2 to l do

20 Weights[i]← fi−1

sumfactors

21 end
22 return Weights

be denoted by A1, A2, A3 and A4. The jth difference dj can be written as-

dj = Aj − Aj+1 (6.9)

where j = 1, 2, . . . , l−1. The main reason for calculating the differences in accuracy

of the model is because the differences among the four models (in terms of accuracy)

is not uniform. Hence, the differences in weight values for each model should also

not be uniform. But, in normal rank based weighting method, each model gets

a weight that is just 1 less than the previous model’s weight in spite of having
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accuracy values which are non-uniformly different. Thus, we decide to factor in the

individual contributions of each model and penalize them according to the difference

in accuracy. Based on this value of dj, we calculate for each rank value, a factor fj

which is the sum of the rank value R(Aj) and 1 minus the difference dj. We write,

fj = R(Aj) + (1− dj) (6.10)

where j = 1, 2, . . . , l − 1. Finally, we calculate the weight αj by normalizing the

factor fj:

αj =
fj∑l−1

j=1 fj +Rmax

(6.11)

where, j = 1, 2, . . . , l − 1 and Rmax being the rank of the model with the highest

accuracy (Rmax = 4 in our case). The weights are then multiplied with the outputs

of each model and hence Equation 6.8 can be represented as:

C(X ) =
l−1∑
j=1

αjCj(X ) + αLCL(X ) (6.12)

In the above equation, αL = Rmax∑l−1
j=1 fj+Rmax

with L denoting the model having the

highest rank after sorting. The overall solution algorithm is presented in Algorithm

6.2.

6.6 Experimental Results

In this section, we first discuss data preparation. This is followed by implementation

details. We then extensively evaluate our solution, including ablation studies and

comparisons with external approaches.

6.6.1 Data Preparation

For experimentation, publicly available ADNI database is used [251]. We take a

subset of ADNI DTI data that has been pre-processed with alignment and skull-

stripping. Since there are patients that have multiple images taken during a period
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Algorithm 6.2: Algorithm of proposed solution

Input : EPI volumes E = [e1, e2, . . . , en]
FA volumes F = [fa1, fa2, . . . , fan]
MD volumes M = [md1,md2, . . . ,mdn]
FA-MD regional averages for 57 brain regions
V = [v1, v2, . . . , vn] where each vi = [p1, p2, . . . , p57, q1, q2, . . . , q57],

pj being the averaged FA value and qj being the averaged MD value for a
particular brain region.

n = number of training examples
Output: Classification label C
/* Initialize an Accuracy array of size 4 to store the

accuracies of each model */

1 Accuracy = empty
/* Train EPI data in VoxCNN network and store accuracy */

2 Ae ← V oxCNNe(E)
/* Train FA data in VoxCNN network and store accuracy */

3 Afa ← V oxCNNfa(F )
/* Train EPI data in VoxCNN network and store accuracy */

4 Amd ← V oxCNNmd(M)
/* Train EPI data in VoxCNN network and store accuracy */

5 Av ← RFC(V )
6 Accuracy ← [Ae, Afa, Amd, Av]
// Get the weights from Algorithm 6.1 by giving Accuracy as

input

7 Weights←MRA(Accuracy)
/* For any new input X = [e, fa,md, v], where e = EPI Volume,

fa = FA Volume, md = MD volume and v = Averaged FA-MD

values, find the prediction results from each of the four

models */

8 Ce(e)← V oxCNNe(e)
9 Cfa(fa)← V oxCNNfa(fa)

10 Cmd(md)← V oxCNNmd(md)
11 Crfc(v)← RFC(v)
12 C(X )← [(Weights[0]× Ce(e)) + (Weights[1]× Cfa(fa)) + (Weights[2]×

Cmd(md)) + (Weights[3]× Crfc(v))]
13 C ← index of max(C(X ))
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Figure 6.5: Data set division strategy

of time, to minimize possible information “leaks”, only the last images were taken

for each subject. Also, there were data from two other classes namely MCI and

Significant Memory Concern (SMC), but the number of data for these classes were

so less that we did not consider those two classes for our experiments. The resulting

dataset has 655 images of four classes: 150 of AD patients, 150 of LMCI, 205 of EMCI

and 150 of CN. As the number of data for each class is unequal and the total number

of data is not enough for training a deep learning model, SMOTE oversampling is

used to increase the number of samples for each minority class. Each of the scan

contains 3 3D volumes of size 110× 110× 110 containing EPI, FA and MD data.

We first divided the dataset containing 655 images into training and testing sets,

keeping in mind the number of images in each class. So we randomly took 80% of

images each from AD, CN, EMCI and LMCI and created the training set containing

total of 524 images. The remaining 20% from each class were taken to form the

testing set, totaling 131 images.

We then applied SMOTE oversampling technique to increase the number of sam-
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ples of each minority class (AD, EMCI and LMCI) to match that of the majority

class (CN). As a result, each class has a total of 164 images now.

We then split the entire training set into 10 folds for 10-fold cross validation,

keeping the number of images from each class the same. This resulted in 6 folds

each containing 64 images (16 from each of AD, CN, EMCI and LMCI) and 4 folds

each containing 68 images (17 from each of AD, CN, EMCI, and LMCI). The details

of dataset division are explained in Fig. 6.5.

Each of the FA and MD data has a corresponding metadata file containing the

averaged FA, MD values for each brain region which is extracted to create the 4th

dataset containing real numbered values which was fed into RFC after going through

the same dataset division process explained above. Each image file is stored as 3D

tensor of shape 110 × 110 × 110 in Nifti file format (.nii). The EPI image file

contains voxel intensity values, and the FA and MD files have real numbered values

within 0 and 1. For each model, a 10-fold cross validation has been employed to

get better approximation of the prediction performance before applying the decision

level fusion.

As such, the investigators within the ADNI contributed to the design and im-

plementation of ADNI and/or provided data but did not participate in analysis or

writing of this article. A complete listing of ADNI investigators can be found at the

ADNI website [251].

6.6.2 Implementation Details

After creating training and testing sets for each type of data i.e., EPI, FA, MD

and regional FA-MD values as explained in Section 6.6.1, we trained the training

set with 10-fold cross validation. It performed better than 5-fold cross validation,

as the number of training data in each fold significantly increased. We fed the

accuracy value of each model (three CNNs for EPI, FA, MD and one RFC for FA-

MD averaged values) to compute the modulated weights which were used in our

novel modulated rank averaging method. Then, for each data in the testing set, the

classification output of the individual models was multiplied with the corresponding
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Figure 6.6: Graph showing how number of estimators in Random Forest Classifica-
tion affects accuracy

weights previously calculated and a weighted averaging was done to arrive at the

final classification.

We first furnish the details of VoxCNN training parameters. This is followed by

elaborate discussions on setting of various parameters pertaining to RFC.

(A) VoxCNN Training parameters

We train the network using AdaM optimizer with learning rate of 27 × 10−6 and

batch size of 32 for 80 epochs for each fold to get the perfect class separation on the

fold training set and stabilize the performance metrics on fold validation set. The

final accuracy is calculated on the separately kept test set containing 131 samples.

We keep the training parameters the same for each model (EPI, FA, and MD) in

order to avoid conflict while combining the outputs of the models so that the decision

level fusion is unbiased.

(B) Random forest classifier parameters

The classifier is also tuned on the training set by experimenting with the number

of trees/estimators. From Fig. 6.6, it is evident that setting the number of trees to

1200 yields best results. The function to measure split quality is set to ‘entropy’ as

‘gini’ function often leads to poorer results than ‘entropy’.

(C) Synthetic minority oversampling technique parameters

SMOTE oversampling (see Section 6.5.2) is used to create synthetic training sam-

ples, which helps in balancing the number of training data for each class. After
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Figure 6.7: Graph showing how number of SMOTE neighbors affects accuracy
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Figure 6.8: Graph showing how number of SURF features affects accuracy

experimenting with the number of neighbors in SMOTE on the training set, keeping

other parameters constant, we have found that the best results are obtained when

the number of neighbors is set to 40. This is evident in the Accuracy vs. SMOTE

neighbors graph in Fig. 6.7.

(D) Spatially Uniform ReliefF parameters

SURF selects the best features from numerous features to find a balance between

computation time and accuracy. In our case, we have selected 50 features. By

experimenting with the number of features in a small dataset keeping the number

of RFC estimators and SMOTE neighbors constant, it was found that 50 features

gives the best accuracy value as evident in Fig. 6.8.

6.6.3 Time Complexity Analysis

Our entire solution constitutes three main components - 3D VoxCNN model for

using 3D radiological data, Random Forest Classifier for using FA-MD values and

MRA algorithm for ranking the mentioned models. Using the time complexity (T 3D
V )
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of 3D VoxCNN previously defined in Eq. 4.12 of Chapter 4, and that of Random

Forest (Trfc) from Eq. 2.10 of Chapter 2, we now define the time complexity of

MRA algorithm below-

From Algorithm 6.1, it follows that the time complexity of the algorithm depends

on the number of models mn used. In this case, mn = 4. Hence, the time complexity

can be written as-

TMRA = O(mn) (6.13)

Thus, the total time complexity of our proposed solution is-

Ttotal = T 3D
V + Trfc + TMRA

=
d∑

n=1

kn−1 · s3n · fn · l3n · r1 · b1 +

f∑
l=1

D ·W ·H ·N +O(R · p · q · log(p)) +O(mn)

(6.14)

In this case, d = 4 and f = 1, i.e., we have 4 convolutional layers and 1 fully

connected layer in VoxCNN.

6.6.4 Individual Model Performance

The evaluation accuracy and Area under curve (AUC) of Receiver Operating Char-

acteristics (ROC) for the individual models evaluated with the test set are shown in

Table 6.1. The ROC is plotted by varying the decision threshold of our model output

and then plotting the True Positive Rate (TPR) vs. False Positive Rate (FPR) at

each threshold. It can be seen that the RFC has performed worst, while the EPI

VoxCNN model has performed best. The models in decreasing order of performance

are EPI, MD, FA and RFC.

6.6.5 Combined Model Performance

The models in various combinations are fused at decision level using three different

fusion techniques as mentioned below.
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Table 6.1: Individual evaluation accuracy of EPI, FA, MD and RFC models

Model Accuracy (%)

EPI 87.4
FA 76.4
MD 84.5
RFC 69.4

Figure 6.9: ROC curves of the combined models (Majority Voting, Rank Averaging
and Modulated Rank Averaging)

(A) Majority voting method

Since each model gives a single class decision, we take that as a vote for that partic-

ular class and consider the final output as the class that gets the maximum number

of votes. In this way, we found that the accuracy has significantly increased from

that of the individual models.

(B) Rank Averaging method

In this scheme, the output probabilities of each model are simply multiplied by the

rank of that model, sorted according to descending accuracy [252]. This method is

better than the majority voting method by 3%.
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(C) Modulated Rank Averaging method

Our proposed model performed even better than the Rank Averaging method. As

the accuracy of each model sorted in increasing order is not uniform (see Table 6.1),

i.e., their relative differences are not the same, the weight assigned to them should

also not be uniform. We modified the weights of the Rank Averaging method to

factor in the differences of the model accuracies (see Eq. 6.10). The ROC curves

for each of the combined models are plotted in Fig. 6.9 where we can see that the

modulated rank average performs slightly better than the rank averaging model.

This better performance is quantitatively corroborated by the accuracy and AUC

values in Table 6.3. The per-class metrics are also shown in Table 6.4.

To demonstrate statistical significance of the improvement in results, we have

computed confidence interval (with a confidence of 95%) for the difference between

evaluation accuracy values of the proposed modulated rank averaging method and

other two decision fusion approaches, i.e., rank averaging and majority voting. If the

confidence interval includes zero, the difference is not significant at that confidence

level. If the confidence interval does not include zero, then the sign of the differ-

ences in the accuracy values indicates which alternative is better [253]. Since, the

confidence intervals (with a confidence of 95%) do not include zero in either of the

cases, we can say that the results presented in Table 6.2 confirm that the proposed

decision level fusion approach yields statistically significant improvements over the

other two existing decision fusion strategies.

6.6.6 Ablation Study of the Models

Keeping the best fusion strategy, i.e., modulated rank averaging based decision fu-

sion, we now show the utility of the four models. An extensive ablation study is

Table 6.2: Differences in evaluation accuracy at 95% confidence level

Difference
Confidence Interval (95%)

Min. Max.

Ours vs. Rank Averaging 3.298× 10−4 167.854× 10−4

Ours vs. Majority Voting 294.871× 10−4 528.495× 10−4
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Table 6.3: Evaluation accuracy and Area under Curve (AUC) of the fusion methods
with all four model combinations

Fusion Approach Accuracy (%) AUC

Majority Voting 88.7 0.923

Rank Averaging 91.8 0.957

Modulated Rank Averaging 92.6 0.962

Table 6.4: Per class metrics containing the precision, recall and f1-score for each
disease class

Class Precision Recall f1-score

AD 0.96 0.92 0.94
CN 1.00 0.97 0.98
EMCI 0.88 0.88 0.88
LMCI 0.85 0.92 0.88

carried out in that regard. Within that study, we compare the performance with all

4 models (EPI, FA, MD and RFC), all possible combinations of any 3 models at a

time as well as any 2 models at a time. The accuracy and AUC for each combination

are shown in Table 6.5. This table shows that all four models are necessary to yield

best result. It is also interesting to note from a comparison of Table 6.1 and Table

6.5 that inclusion of RFC, a classical ML tool, can improve the overall accuracy

when combined with DL models on EPI or MD values. Furthermore, when clubbed

with FA + MD, RFC can once again increase the overall accuracy. So, we show how

effective can be the combination of DL and ML methods for a given problem.

6.6.7 Comparison with feature fusion strategies

We also ran an experiment to apply feature fusion instead of decision level fusion.

Features were extracted from the individual DL models (EPI, FA and MD), from

the penultimate Fully Connected (FC) layer (dense 1). It consisted of 64 dimensions

for each of the EPI, FA and MD models. Concatenating all the features from the

DL models along with the input features of the RFC model (6.5.2), a total of 242

features were obtained (64+64+64+50). All these features were then trained in an

RFC with 1200 trees. This approach of classification gave a mean accuracy of 79.34%
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Table 6.5: Accuracy and Area Under Curve (AUC) for all combinations using Mod-
ulated Rank Averaging method

Combinations Accuracy (%) AUC

All 92.6 0.962
EPI + FA + MD 91.2 0.955
EPI + FA + RFC 86.48 0.913
EPI + MD + RFC 88.87 0.934
FA + MD + RFC 85.32 0.908
EPI + FA 85.26 0.901
EPI + MD 90.42 0.943
EPI + RFC 84.3 0.886
FA + MD 89.37 0.928
FA + RFC 72.74 0.815
MD + RFC 85.29 0.894

Table 6.6: Comparison of evaluation accuracy with other state-of-the-art approaches

Approach Modalities
Number of

classes
Accuracy

(%)

Bi et. al. (2019) [254] MRI 3 92.5
Billones et. al. (2016) [22] MRI 3 91.85
Vu et. al. (2018) [255] MRI + PET 3 91.13
Cheng et. al. (2017) [256] MRI 3 87.15
Duc et. al. (2020) [224] MRI 3 87.15
Gunawardena et. al. (2017) [257] MRI 3 84.4
Our Method DTI 4 92.6

after doing 10-fold cross-validation. We also compare our proposed modulated rank

averaging method with some state-of-the-art feature fusion approaches in Table 6.7.

All the above approaches perform either a binary or a three-way classification. It is

interesting to note that our proposed approached has achieved 92.6% accuracy in a

direct 4-class classification problem. Hence, we confirm that for this classification

problem, decision level fusion works better than feature fusion.

6.6.8 Comparison with other approaches

We compare our method with seven state-of-the-art methods but no results are

available for 4-class AD classification on ADNI dataset using DTI data. So, we

are showing comparisons from the problem perspective and comparing our results
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Table 6.7: Comparison of evaluation accuracy among different feature fusion meth-
ods along with the accuracy (in %) for five types of classifications (AD vs. CN, AD
vs. MCI, MCI vs. CN, AD vs. MCI vs. CN, AD vs. EMCI vs. LMCI vs. CN)

Approach
Accuracy (%) with Classes

AD vs. CN MCI vs. CN AD vs. MCI
AD vs. CN

vs. MCI
AD vs. CN

vs. EMCI vs. LMCI

Li et. al. (2015) [258] 91.4 82.1
Shi et. al. (2017) [259] 91.95 83.72
Lei et. al. (2016) [260] 96.93 82.75
Madusanka et. al. (2019) [261] 86.61 82.05 78.95
Xiao et. al. (2017) [262] 85.71 86.11 79.44 75
Our feature fusion method 79.34
Our decision fusion method 92.6

with the works which have addressed at the same AD classification problem but

from differing modalities and fewer classes. All seven methods showed classification

among AD, MCI and CN, i.e., three classes. But we have segregated the MCI class

into more detailed EMCI and LMCI classes and thus made a four class classification.

Classification between EMCI and LMCI is particularly difficult as their differences

are not very significant. Also, none of them used DTI modality. They used MRI or

a combination of MRI and PET to achieve their goal. The comparisons, shown in

Table 6.6, clearly points to the supremacy of our approach.

6.7 Summary

Classification of Alzheimer’s Disease (AD) is crucial in diagnosing dementia, par-

ticularly in the aging population. Currently, neurologists primarily perform this

classification manually using brain scans. Existing automated methods are limited

to two-class or three-class classification from MRI data. In this chapter, we present

the first automated solution for four-class AD classification using 3D DTI data. We

trained deep learning (VoxCNN) and machine learning (Random Forest) models on

different aspects of the DTI scans, and combined their outputs using a modulated

rank averaging decision fusion strategy. Extensive experiments, including compar-

isons and ablation studies on the ADNI database, demonstrate the effectiveness of

our approach.
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Chapter 7

Segmentation of the Hippocampus

of the human brain

The development of computer vision techniques for hippocampus segmentation is cru-

cial for accurately quantifying hippocampal volume, a key biomarker in diagnosing

and monitoring neurodegenerative diseases like Alzheimer’s and epilepsy. Precise

segmentation enables early detection of structural changes, facilitating timely inter-

ventions that can slow disease progression and improve patient outcomes. These

techniques also reduce errors associated with manual segmentation, enhancing diag-

nostic accuracy and the effectiveness of treatment monitoring.

7.1 Introduction

The hippocampus (HC) is a bilateral brain structure located in the medial temporal

lobe at both sides of the brainstem near the cerebellum. HC is a very intricate

and heterogeneous structure broadly divided into several subfields, namely, subicu-

lum, cornu ammonis (CA1/2/3/4), and dentate gyrus (DG). Alzheimer’s Disease

(AD), Parkinson’s Disease (PD), autism, multiple sclerosis, and natural ageing af-

fect the HC. Stages of AD affect hippocampal subfields differently. The atrophy of

stratum radiatum/stratum lacunosum-moleculare (SRLM) apical dendrites of hip-

pocampal CA1 closely mirrors episodic memory impairment in AD as well as PD

patients [263]. HC atrophy study may give biomarkers and improved techniques for

detecting and predicting AD and other neurodegenerative illnesses. So, segmenta-
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tion of HC assumes paramount importance in neuroradiology. HC is involved in

many brain functions such as memory and spatial reasoning, [264], but can be af-

fected in shape and volume by different pathologies, such as the neurodegeneration

associated with Alzheimer’s Disease (AD) [265], or surgical intervention to treat

temporal lobe epilepsy [266]. The volume and shape changes of hippocampus serve

as early indicators of tissue degeneration. Therefore, intercepting these changes is

of crucial importance. Over the past decade, there has been a growing interest in

segmenting hippocampal subfields using MRI. Recent research has identified distinct

functional roles for these anatomical subregions, with CA1 implicated in memory

integration and inference [267], CA3 in memory retrieval [268], and both the den-

tate gyrus (DG) and CA3 in pattern separation [269]. Clinically, the volume or

morphology of the hippocampus and its subfields are closely related to many neu-

rodegenerative diseases like Epilepsy [270] and Alzheimer’s disease [271]. So, it is

desirable to develop automatic hippocampal subfields segmentation from brain MR

image. However, manual delineation of hippocampal subfields is a laborious and

time-intensive task, leading to constraints on sample sizes in various studies.

7.2 Related Works

This high expense of manual segmentation has prompted the development of efficient

automation techniques. We first discuss some works that use classical techniques for

HC subfield segmentation. FreeSurfer (FSL) [272] was one of the early attempts.

FSL is capable of producing decent coarse segmentation. However, it lacks finer

details and accurate edge delineation. Some other noteworthy works attempted HC

segmentation using atlas registration [273] and level sets [274], but they were in 2D

and did not perform well in 3D. In order to perform fine-grained multi-class seg-

mentation, several methods were proposed. The authors in [275] used a multi-atlas

approach combined with a similarity-weighted voting and a boosting-based error cor-

rection as a solution. They termed their method, ASHS. This method took several

hours to produce a segmentation due to exhaustive use of non-linear registrations.

More recently, a method named HIPS [276] obtained state-of-the-art results with
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relatively low processing times. While classical methods integrated domain-specific

image features like gradient, intensity, and textures within an energy minimiza-

tion framework, they are found to heavily depend on initialization, such as manual

seeding. As a result, they are prone to segmentation errors caused by uncertain

positioning of the markers. Furthermore, these approaches are quite laborious and

may not be practical for clinical environments with a heavy workload.

In recent times, several deep learning (DL) techniques have been used to improve

HC segmentation. In recent times, Convolutional Neural Networks (CNN) gained

popularity over previous semi-automatic and automated approaches for HC segmen-

tation [277]. Medical imaging lacks consistent and sufficient annotated data, making

DL algorithms performing sometimes below par [278]. To circumvent this limita-

tion, shape-driven DL algorithms have evolved, which can combine CNN-learned

deep features with structural shape information, to boost the performance [279].

Only a few shape-based HC segmentation studies are reported till date. Brusini et

al. [280] employed shape fitting and UNet to segment the HC. However, they used

three 2D models instead of one 3D model, which requires more training time. Oth-

ers like Tang et al. [281] have employed signed distance maps (SDM) to build loss

functions that penalize Dice loss and SDM values. The above technique estimated

loss by training a model to predict SDM and calculating Dice loss between the pre-

dicted and the ground truth SDM. This required additional model training. In the

scenario of multi-class segmentation of HC subfields, many DL techniques have been

proposed. UNet based methods [282], [283] have shown promising results. Shi et

al. [284] proposed a Generative Adversarial Network (GAN) to create a segmenta-

tion model. But UNet and GAN based methods require a lot of data and medical

imaging lacks consistent and sufficient annotated data, making DL algorithms per-

form poorly in many cases [285]. Although some authors have tried to bypass this

problem using multi scaling technique [286] and using higher resolution data [287],

the problem continues to exist.
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7.3 Contributions

In this chapter, we discuss two major tasks related to HC segmentation. The first

task is to segment the whole HC and the second task is to segment the subfields of

HC. We discuss the contributions related to both these tasks below-

7.3.1 Whole Hippocampus Segmentation

In this chapter, we first propose a novel shape-based DL strategy for HC segmenta-

tion. Contour directional information is incorporated to create a shape based model

using Histogram of Oriented Gradients (HoG). HoG [288] is an excellent feature

descriptor that can extract shape as well as structural information from an image

by computing magnitude and angle gradients. The application of using HoG with

deep learning is well demonstrated in [289]. We took inspiration from [290] while

developing the formalism. We have further suggested an efficient pooling to tackle

the derivability problem of histogram in HoG. Normal pooling methods like max-

pool, min-pool and average-pool may not yield desirable results in this situation.

Our main contributions are summarized below -

1. We have incorporated shape based loss using 3D gradient magnitude and gra-

dient angles of HoG to find the 3D HC boundary along with directional infor-

mation.

2. A 3D weighted majority pooling technique, that can act as a substitute for

histogram operation on tensor data, is developed. This can be implemented

in DL models as it is derivable.

3. Our proposed solution for HC segmentation can provide highly accurate results

in 3D. This can reduce the diagnosis time and expedite the surgical planning.

7.3.2 Hippocampus Subfields Segmentation

In order to segment subfields, we further propose a shape driven multi-class segmen-

tation method using UNet [291] and graph cut. We take inspirations from [83], [87]

and [292] to create a state-of-the-art model to segment the HC into three classes,
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namely, CA1-3, CA4/DG and Subiculum (Sub). In [118], Boykov et al. showed that

a two-class segmentation is achievable in polynomial time using graph cuts. How-

ever, if the number of labels exceeds 2 (as for the present problem), finding an exact

solution becomes an NP-hard problem. They suggested two types of large moves

(changing labels of individual pixels/voxels) based on minimal graph cuts, namely,

α-expansion and α-β swap. In this work, we use UNet to improve the α-β swap. A

number of research works demonstrated that use of shape information can improve

the segmentation accuracy [293], [294], [87]. Shape priors provide valuable guidance

by incorporating prior knowledge about the expected shapes of objects in the image.

This guidance helps the segmentation algorithm to make more informed decisions

about the boundaries and regions of interest [295]. By imposing shape constraints,

shape priors help to enforce consistency in the segmented shapes, ensuring that the

output conforms to the expected shape characteristics [296]. The shape prior has

to be made adaptive in case of substantial noise and intensity variations. Here, we

better an adaptive shape prior from deep learned information via UNet. Our main

contributions are summarized below -

1. We propose a new energy function for multi-class segmentation based on graph

cut and deep learning (3D UNet).

2. We incorporated the learned information from 3D UNet for optimizing the

number of α-β swaps used in multi-class graph cut segmentation.

3. In addition, we also show how an adaptive shape prior can be learned from

UNet thereby improving the overall segmentation performance.

7.4 Proposed Method for Whole Hippocampus

Segmentation

In this section, we describe our proposed method. The block diagram showing the

overall method is presented in Fig. 7.1.
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Figure 7.1: Block diagram of our proposed approach: pred denotes the predicted
output of Attention Unet model and gt denotes the ground truth. Ppred and Pgt are
the pooled gradients of predicted and ground truth respectively, as shown in Eq.
7.9.

Figure 7.2: Architecture of 3D Attention UNet. The input, output and feature
dimensions are written beside the corresponding blocks. The number of channels is
written on top of each block.
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7.4.1 Attention UNet

3D Unet [33], a deep fully convolutional encoder-decoder network architecture has

gained popularity for voxel-wise segmentation. In this work, we utilise the Attention

based UNet as described in [297]. The authors in [298] have argued that it is one

of the best Unet models in terms of accuracy, number of parameters, training and

inference time. The attention mechanism is necessary for training our model with a

focus on the HC region. This focus has to be explicitly induced due to the inherent

difficulty in distinguishing HC from its neighboring tissues, which exhibit similar

contrast. The Attention UNet consists of a contracting path, which incorporates

convolutional and max-pooling layers, followed by an expanding path comprising

convolutional and up-sampling layers. The key distinction between the Attention

UNet and the standard UNet lies in the integration of attention mechanisms, or

attention gates, within the skip connections. These gates enhance the network’s

ability to focus on relevant features while suppressing irrelevant ones, thereby im-

proving the accuracy of tumor segmentation. As explained in [297], the attention

gate (AG) takes two input vectors: Q and S. Vector S is obtained from a deeper

layer of the network, offering lower spatial resolution but richer feature represen-

tation, while vector Q undergoes a strided convolution, and vector S is processed

through a 1 × 1 convolution. The vectors are then combined through element-wise

summation to form a new vector, which is passed through activation and convolu-

tional layers for dimensionality reduction. A sigmoid function is applied to generate

attention coefficients, representing the importance of each element in vector Q. Tri-

linear interpolation [299] is used to restore the attention coefficients to their original

dimensions. These coefficients are multiplied with vector Q, scaling it according to

its relevance, before the modified vector is propagated through the skip connection

for further processing. Fig. 7.2 depicts the architecture of our 3D Attention UNet

model. It has a depth of 4 and takes as input a 3D single channel tensor of dimension

192× 224× 192× 1 (height× width× depth× channel). The model outputs a 3D

single channel tensor of same dimensions containing the segmentation mask. We use

batch normalization for each convolutional layer followed by ELU activation.
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7.4.2 Basics of 2D HoG

HoG is a well-known feature descriptor which is able to extract structural and shape

information [288]. It is better than other feature descriptors as it uses magnitude as

well as angle of the gradient to compute the features. But the HoG descriptor focuses

on the structure or the shape of an object. It is better than other edge descriptor as

it uses magnitude as well as angle of the gradient to compute the features. For the

regions of the image, it generates histograms using the magnitude and orientations

of the gradient.

Considering a block of 3 × 3 pixels, first Gx and Gy is calculated for each pixel

using the horizontal and vertical 1-D filters [1, 0,−1] and [1, 0,−1]. Gx and Gy is

calculated using the formulae below for each pixel value.

Gx(r, c) = I(r, c− 1)− I(r, c+ 1)

Gy(r, c) = I(r − 1, c)− I(r + 1, c)
(7.1)

where (r, c) corresponds to row and column number and I(x, y) means intensity of

pixel at location (x, y).

After calculating Gx and Gy, magnitude (µ) and angle (θ) of each pixel is calcu-

lated using-

µ =
√
Gx

2 +Gy
2 (7.2)

and after obtaining the gradient of each pixel, the gradient matrices µ and θ are

divided into n×n cells. If the height and width of a 2D image is h and w respectively,

then each cell will contain h
n
× w

n
pixels. h and w should be divisible by n to avoid

discrepancy and information loss. Hence, the image should be resized accordingly

before applying HoG. For each cell, a histogram is calculated followed by block

normalization as described in [288].

7.4.3 Basics of 3D HoG

Since, we deal with 3D volumetric images, we use 3D feature descriptors which are

shown to carry more information than their 2D counterparts [300]. We first extract
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gradients from an image volume A of dimension h × w × d; where h, w and d

respectively denote the height, width and depth of A. We calculate Gx, Gy and Gz,

the gradient matrices along the x, y and z dimensions respectively by convolving A

with a block of 3× 3× 3 kernel. The elements of the matrices are as follows:

Gx(i, j, k) = I(i+ 1, j, k)− I(i− 1, j, k)

Gy(i, j, k) = I(i, j + 1, k)− I(i, j − 1, k)

Gz(i, j, k) = I(i, j, k + 1)− I(i, j, k − 1)

(7.3)

Here, i, j, k denote coordinates along the x, y, z directions. I(i, j, k) is the intensity

at A(i, j, k). We build three matrices denoting the magnitude (Vµ), the azimuth

angle (Vθ) and the zenith angle (Vϕ) of the gradient. The elements of the matrices

are respectively given by:

Vµ(i, j, k) =
√
Gx

2 +Gy
2 +Gz

2 (7.4)

Vθ(i, j, k) =

∣∣∣∣tan−1Gy

Gx

∣∣∣∣ (7.5)

Vϕ(i, j, k) =

∣∣∣∣cos−1Gz

Vµ

∣∣∣∣ (7.6)

Naturally, each of Vµ, Vθ, Vϕ has the dimension of A, i.e., (h× w × d).

7.4.4 Majority Pooling

The histogram, which is an integral part of HoG, is not a derivable function. This is

a critical problem as for deep learning models, we need derivable functions to back

propagate the loss. Hence, we present a novel majority pooling technique that pools

the magnitude of the voxels with the most frequently occurring angle (separately in

Vθ & Vϕ) in each cell.

We first divide the three matrices Vµ, Vθ & Vϕ into n×n×n voxel grids (smaller
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Figure 7.3: Figure showing the range of angles considered for selecting the voxels
from vsθ and vsϕ. If α is the most frequently occuring angle, then all angles in range
α± β are considered.

matrices). So, each grid will contain h
n
× w

n
× d

n
voxels. Let us consider the total

number of such grids as g. Then, we can write Vµ = [v1µ, v
2
µ, . . . , v

g
µ] where the

smaller matrices v1µ, v
2
µ, . . . , v

g
µ are constructed row-wise with a stride of n and each

of them has dimensions n × n × n. Similarly, we write Vθ = [v1θ , v
2
θ , . . . , v

g
θ ] and

Vϕ = [v1ϕ, v
2
ϕ, . . . , v

g
ϕ]. We next construct two sets ψθ and ψϕ to respectively select the

voxels from vsθ and vsϕ that have non-zero magnitudes in the corresponding location

of vsµ (s = 1, 2, . . . g). So, we write:

ψθ = {vsθ(i, j, k)|vsµ(i, j, k) > 0}

ψϕ = {vsϕ(i, j, k)|vsµ(i, j, k) > 0}
(7.7)

where, vsθ(i, j, k), vsϕ(i, j, k) and vsµ(i, j, k) is the value at location (i, j, k) of these

matrices (i = 1 . . . n, j = 1 . . . n, k = 1 . . . n). We now find the most frequently

occurring angle α from ψθ and save the voxel location of all the angles in the range

[α−β, α+β] (see Fig. 7.3) into Mθ, where Mθ ⊂ ψθ. This is done to pool magnitude

values from vsµ with corresponding angles in vsθ that are equal to or close to α. This

range is suitable as the gradient directions of all the angles within this range give

a similar idea about the main direction of that region. We construct Mϕ likewise,

where, Mϕ ⊂ ψϕ.

Finally, we create matrices psθ, p
s
ϕ to pool only those values from vsµ contained in
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Mθ and Mϕ respectively and set the values at other locations to zero. So, we write:

psθ(i, j, k) =

v
s
µ(i, j, k) if (i, j, k) ∈Mθ

0 otherwise

psϕ(i, j, k) =

v
s
µ(i, j, k) if (i, j, k) ∈Mϕ

0 otherwise

(7.8)

where psθ(i, j, k) is the value at location (i, j, k) of psθ and similarly for psϕ. All psθ

(s = 1, . . . , g) of dimension n×n×n are concatenated row-wise to form the pooling

matrix Pθ of dimension h× w × d. We construct Pϕ likewise.

The above pooled matrices contain gradient magnitudes of only those regions

that have voxels with dominating angles in that region. Hence, it represents an

approximate surface of the object with angular dominance capturing the shape in-

formation.

7.4.5 A Shape based Loss Function

After formulating the 3D pooling matrices in the above section, it can be applied

to both the ground truth label mask and the predicted label mask. Let us denote

the output of 3D pooled gradient matrix from the ground truth mask as P gt
θ , and

P gt
ϕ , where ϕ and θ denote the azimuth and zenith angles respectively. Similarly, the

corresponding pooled gradient matrices of the predicted mask are denoted as P pred
θ

and P pred
ϕ . Thus, the loss function can be calculated as Sum Squared Error (SSE)

between the ground truth pooled gradient matrices and predicted pooled gradient

matrices of azimuth (θ) and zenith (ϕ). We can represent the loss function based on

the pooled gradient matrices as:

LP =

√[
P gt
θ − P

pred
θ

]2
+
[
P gt
ϕ − P

pred
ϕ

]2
=

√√√√ h∑
i=1

w∑
j=1

d∑
k=1

[{
pgtθ (i, j, k)− ppredθ (i, j, k)

}2

+
{
pgtϕ (i, j, k)− ppredϕ (i, j, k)

}2]
(7.9)
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where pgtθ (i, j, k) is the value of P gt
θ at position (i, j, k). Similar meaning holds for

ppredθ (i, j, k), pgtϕ (i, j, k) and ppredϕ (i, j, k). The above loss function focuses on the

shape of the predicted mask and penalizes on the dissimilarity of the shape of the

prediction. However, we also need to focus on the overall structure and region for

correct prediction. So, we use the Dice Loss [126] along with our pooled gradient

loss to build a composite function. This composite loss function is given by:

L = Ldice + λLP (7.10)

where λ denotes a weight with value in (0, 1] and is adjusted experimentally.

7.5 Hippocampus Subfield Segmentation

In this section we discuss about how we modified Graph Cut with deep learned

information to perform state of the multi-class segmentation of Hippocampus.

7.5.1 Deep Graph Cut

Let us define the 3D MRI input as a gray-scale volumetric data, which may be repre-

sented as a 3D weighted graph denoted by G = G(V,E). Each vertex is represented

by a voxel x in G, and X is the collection of all voxels. We introduce two new

vertices, called ’source’ and ’sink’, represented by s and t respectively. There are

two sorts of edges or linkages that we consider: t-links (T) and n-links (N). s and

t is linked to every voxel x through t-links. We utilize a compact 26-neighborhood,

represented as Ne(x) for every voxel x. Assume that y is a neighbor of x. There-

fore, y belongs to the neighborhood of x, and we establish a connection between x

and y by an n-link. Therefore, the set V is defined as the union of sets X, s, and

t, whereas the set E is defined as the union of sets T and N. Let us establish a

segmentation A as a classification of all voxels into two distinct classes: ”object” or

”background”. This classification is done on a voxel-wise basis. Therefore, according

to the reference [301], it is necessary to minimize the subsequent energy function:

ζ(A) = B(A) + λR(A) (7.11)
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The term B(A) represents the boundary characteristics or smoothness term of A,

while R(A) represents the regional properties or data term of A. These terms are

represented mathematically as below:

B(A) =
∑

x∈X,y∈Ne(x)

B(x,y) (7.12)

R(A) =
∑
x∈X

Rx (7.13)

In [83], we modified the above energy function (Eq. 7.11) by incorporating learned

information from the 3D UNet [291]. The modified energy function is given below:

ζDGC(A) =
∑

x∈X,y∈Ne(x)

BDGC(x, y)+

λDGC(x)
∑
x∈X

RDGC(x)

(7.14)

7.5.2 Multi-class Deep Graph Cut

As stated earlier, in this work, we deal with multi-class hippocampus segmentation

where a voxel x can belong to any of ’CA1-3’, ’CA4/DG’ and Subiculum. Following

[118], our goal is to find a labeling f that assigns each voxel x ∈ X a label fx ∈ L

and, |L| > 2, where f is both piecewise smooth and consistent with the observed

data. Any labeling f can be uniquely represented by a partition of image voxels,

V = Vl|l ∈ L, where Vl = x ∈ V |fx = l is a subset of pixels assigned a label l. Hence,

Eq. 7.14 can be rewritten as:

ζDGC(Af ) =
∑

x∈X,y∈Ne(x)

BDGC(fx, fy) + λDGC(fx)
∑
x∈X

RDGC(fx) (7.15)

where ζDGC(Af ) is the energy of the labelling f . The knowledge acquired from the

3D UNet [291] is included into the energy function of the 3D graph cut algorithm

in order to achieve precise segmentation. The 3D probability map is obtained from

the last convolutional layer for each image. This map is then used to determine the
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probability, denoted as Pr(fx)UN , of any voxel x belonging to the label fx. The 3D

UNet calculates a regression function that maps the voxels of a 3D input to a 3D

voxel-wise probability map. This is denoted as P : R3 → (0, 1), and it assigns a

value between 0 and 1 to each voxel. Additionally, this probability map is used as

an automated seed required by 3D graph cut algorithm. With this, we now explain

the smoothness and data term in the context of multi label problem as follows. As

mentioned in [83], BDGC(fx, fy) is a product of four components as shown below-

BDGC(fx, fy) = K(x,y) × e−(
(Ix−Iy)2

2σ2 ) × 1

d(x, y)
× 1

δ(x, y)DGC
(7.16)

where d(x, y) represents the Euclidean distance between two voxels x and y having

intensity values Ix and Iy respectively. The term K(x,y) is based on the probabilities

of x and y to have the labeling fx and fy and is mathematically represented as:

K(x,y) = 1− |Pr(fx)UN − Pr(fy)UN | (7.17)

where fx = fy. The factor σ is the standard deviation of voxel intensities of the image

[294]. The term δ(x, y)DGC denotes the sum of differences between probabilities of

neighbouring voxels x and y to belong to fx and fy where fx ̸= fy. This can be

expressed as:

δ(x, y)DGC = |Pr(fx = α)UN − Pr(fy = α)UN |

+|Pr(fx = β)UN − Pr(fy = β)UN |
(7.18)

where α, β ∈ L. The data term RDGC(fx) is dependent on the probability map of

UNet as shown below-

RDGC(fx) = − lnPr(fx = α)UN (7.19)

7.5.3 Alpha Beta Swap

We now discuss how and why we modify the optimization function of α-β swap

moves. The choice of which type of move to select depends on whether the smooth-

ness term of the energy function is a metric or a semi-metric [118]. If the smoothness
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term is metric, α-expansion can be used, otherwise α-β swap move needs to be used.

For a function V (α, β) to be metric, it has to satisfy the following constraints:

1. V (α, β)⇔ α = β

2. V (α, β) = V (β, α) ≥ 0

3. V (α, β) ≤ V (α, γ) + V (γ, α)

for any labels α, β, γ ∈ L [118]. If V (α, β) satisfies only the constraints (1) and

(2) but not (3), then it is called a semi-metric. We have chosen α-β swap moves

to optimize our energy function, as our smoothness term (BDGC(fx, fy)) is a semi-

metric. We explicitly show in the appendix 7.9 that the smoothness term is indeed

a semi-metric.

7.5.4 Deep learned Alpha Beta Swap

If a move from a partition Vl to a new partition V ′
l has labels α, β, then V ′

l = Vl for

all labels l ̸= α, β. This is known as a α-β swap [118]. The difference between Vl

and V ′
l is that some voxels that were labeled as α in Vl are now labeled as β, and

the other way around. The main idea is to use graph cuts to separate all α voxels

from β voxels one by one. Each time through the algorithm, the α − β mix will be

different. The program will keep going through all the possible combinations until

it converges with the minimum energy. The algorithm is guaranteed to converge

in O(V ) time, but when there are a lot of vertices, the whole segmentation process

takes a long time.

As reported in [118], segmenting a 384 × 288 image with α − β swap takes 35

seconds. In our case, the image size is 182× 218× 182 which is far greater than the

images used in [118]. Hence, there is a dire need to optimise the move algorithm to

speed up the overall segmentation.

For this, we turn to Pseudo-Boolean optimization techniques used in [302]. As

mentioned in [302], we encode the moves of the α− β swap algorithm as a vector of

binary variables t = ti,∀i ∈ V . ti = 0 means the label of voxel i changed to α and

ti = 1 means the label changed to β. The transformation function T (f c, t) of a move
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algorithm takes the current labelling f c and a move t and returns a new labelling

fn that has been induced by the move. The transformation function Tαβ() for an

α− β swap transforms f c as

fni = Tαβ(f ci , ti) =


f ci , if f ci ̸= α and f ci ̸= β,

α, if f ci = α or β and ti = 0,

β, if f ci = α or β and ti = 1.

(7.20)

If the current labelling f ci is neither α nor β, we don’t change it. The energy of

the move t is the energy of labelling fn that the move t induces, i.e., Em(t0 =

E(T (f cmt)). Further details about the pseudo boolean energy of the swap move

can be found in Sec. 3.3 of [303].

We modify Eq. 7.20 by adding the label probability information derived from

UNet as follows-

fni = T (f ci , ti) =



f ci , if f ci ̸= α and f ci ̸= β,

α,

if f ci = α or β, ti = 0, [Pr(fx = α)− Pr(fx = β) > τ ]

, or [Pr(fx = β)− Pr(fx = α) < (1− τ)],

β,

if f ci = α or β, ti = 1, [Pr(fx = β)− Pr(fx = α) > τ ]

, or [Pr(fx = α)− Pr(fx = β) < (1− τ)],

(7.21)

We added two more constraints when deciding the new labelling to be α or β.

We wanted the confidence of the UNet model to decide whether a label should be

swapped or should be kept the same. We define confidence of prediction as the

difference between the probabilities of a voxel to have label α and β, i.e., [Pr(fx =

α) − Pr(fx = β)]. Generally, a model is said to predict a label (say α) with high

confidence if the probability of the voxel to belong to α is much higher than that of

the voxel to belong to another label (say β), i.e., if [Pr(fx = α)− Pr(fx = β)] ≥ τ
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Figure 7.4: A sagittal slice view of a brain MRI showing the hippocampus bounded
in red. The region marked in yellow shows that the contrast is less between hip-
pocampus and its surrounding region, which poses a challenge in segmentation.

or [Pr(fx = β) − Pr(fx = α) ≤ (1 − τ)] where τ is some threshold. So, if for any

voxel i, [Pr(fx = α)− Pr(fx = β)] ≥ τ and f ci , the current label of i is either α or

β, then the label of voxel i will be changed to α. Similarly, the decision to change a

label to β if the confidence of the UNet model for that voxel to have a label β than

that of having label α is greater than τ .

7.5.5 Deep Learned Shape Information

In this section, we first discuss what is the significance of addition of a shape term

in HC segmentation, then we briefly mention the importance of adaptive shape term

and how the incorporation of UNet’s probability map helps in creating an adaptive

shape term suitable for 3D HC segmentation.

7.5.6 Need of an Adaptive Shape term

In cases where images are affected by substantial noise and intensity variations, the

necessity for a shape prior can vary across different pixels. Consequently, assigning

a uniform weight to the shape prior term for all pixels may not be suitable. In

our case, 3D MRI images do suffer from noise and intensity variations and in many

places the HC and non HC region of the brain has very low contrast as shown in Fig.

7.4. Segmentation tasks use the adaptive shape term to selectively impose shape
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constraints based on pixel labeling difficulty to give flexibility and local adaptation.

This adaptability allows the system to modify the strength of the shape prior based

on local image properties, applying shape restrictions where they are most useful.

The adaptive shape term dynamically adjusts shape priors based on image intensity,

resulting in more accurate and context-aware segmentation results [292].

(A) Improved Adaptive Shape Term with UNet

We improve Wang et al.’s [292] adaptive shape prior formulation using learned in-

formation from 3D UNet. Following their approach, we add to the smoothness term

BDGC(x, y), a shape term of the form SDGC(x, y) with η as the shape weight. Note

that the authors in [292] defined η = e−(Pr(x)−Pr(y))2 . Pr(k) as the likelihood of a

pixel k belonging to the foreground. They determined this likelihood by using an

unsupervised technique like applying a Gaussian filter.

Unlike in [292], where the authors used 2D images and performed binary seg-

mentation, we deal with 3D images and multi-class segmentation in this work. So

we redefine η as:

η = e−(Pr(fx)−Pr(fy))2 (7.22)

where, Pr(fk) denotes the likelihood of voxel k to have labelling fk. Further, Pr(fk)

is obtained from the probability map of UNet as mentioned in Sec. 7.5.1. This

ensures that we have better probability values than that obtained from using unsu-

pervised techniques, as in [292].

The shape term, SDGC , can be formulated as the unsigned distance function (as

used in [304]) of the segmentation obtained after thresholding probability map P .

It is introduced to enforce structural consistency in the segmentation process by

ensuring that the boundaries of the segmented object align with a shape prior. Let

the segmentation obtained by thresholding P is G with a threshold value of κ. Then,

SDGC = ϕ̄G

(
x+ y

2

)
(7.23)
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where, ϕ̄G : R3 → R is the distance function on G and is such that c̄ =

x ∈ R3 : ϕ̄(x) = 0; c̄ being the set of points that form the boundary of the shape.

The energy will be low if ϕ̄G
(
x+y
2

)
≈ 0 for all neighboring voxels x and y and fx ̸= fy.

If a voxel x lies near the shape template, then it will satisfy ϕ̄(x) ≈ 0. Since,
(
x+y
2

)
is roughly a point on the boundary of the segmented object, the condition for SDGC

to be small is the same as the condition that the boundary of the segmented object

lies near the shape template.

7.5.7 Shape driven Multi-class Deep Graph Cut

We started with Eq. 7.14 which is the deep graph cut for energy function for binary

segmentation. Then we modified it to adapt to multi-class segmentation in Eq. 7.24.

We then modified the α-β swap moves using information from UNet as described

in Sec. 7.5.4. We compute the data term RDGC(fx), smoothness term B′
DGC(fx, fy)

and finally, after incorporating the two terms described in the previous section and

shown in Eq. 7.22 and Eq. 7.23 in the energy function of multi-class deep graph

cut (Eq. 7.15), we get the final energy function for Shape induced multi-class Deep

Graph Cut (SMDGC) method as shown below-

ζMSDGC =
∑

x∈X,y∈Ne(x),fx ̸=fy

BDGC(fx, fy) + ηSDGC+

λDGC (fx)
∑
x∈X

RDGC (fx)

(7.24)

The algorithm for our overall workflow is shown below in Algorithm 7.1 followed

by a discussion on its time-complexity-

7.5.8 Time-complexity Analysis

The alpha-beta swap algorithm, used for multi-label graph cuts, involves iteratively

optimizing the graph by swapping labels between pairs (α, β) to minimize the energy

function. The time-complexity of this approach is influenced by several factors,

including the number of labels, the number of pixels (or nodes), and the underlying

max-flow algorithm used. Here’s a breakdown of the time-complexity:
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Algorithm 7.1: SMDGC

Input: 3D UNet model M trained on training set of the data, Graph G
represented as a 3D grid of voxels

Output: Gout with desired segmentation and same dimensions as G
1 Compute data term RDGC(fx) for each voxel in x ∈ G as shown in Equation

7.19
2 Compute smoothness term BDGC(fx, fy) for each voxel x and its neighbor

y ∈ Ne(x) in G as shown in Equation 7.16
3 Compute η and SDGC as shown in Equations 7.22 and 7.23 respectively
4 Compute the modified transformation function for optimizing the number of

α-β swap moves using Equation 7.21.
5 Compute the final energy function using Equation 7.24, perform Graph cut

and store the result in Gout.
6 return Gout

1. Max-flow Computation: The time-complexity of each max-flow computation

depends on the specific max-flow algorithm used. We have used Edmond

Karp’s implementation [305] of the Ford-Fulkerson Method [88] in our case. It

has a time-complexity of O(V · E2), where the symbols have usual meanings

mentioned in Sec. 7.5.1.

2. Number of Labels: The alpha-beta swap involves considering all pairs of labels,

so the number of iterations is proportional to
(|L|

2

)
= |L|(L−1)

2
, which is O(|L|2),

where L is the set of all labels.

Combining these factors, the overall time-complexity can be expressed as:

O(L2 · V · E2) (7.25)

7.6 Data preparation

In this section, we first discuss the datasets used and the data preparation steps

taken for whole HC and HC subfield segmentation.

7.6.1 Data Preparation

Two publicly available datasets, namely, HarP [306] and Kulaga-Yoskovitz [307] were

used for our experiments. Both of them contain T1-weighted MRI volumes with
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ground truth. HarP is a protocol for manual HC segmentation that uses patient

data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) [308]. The complete

release of HarP includes 135 T1-weighted MRI volumes which we divided into 80%

training, 10% validation, and 10% testing. Kulaga-Yoskovitz (KY) dataset comprises

25 participants aged between 21 and 53 years, with a mean age of 31.2 ± 7.5 years

and a male-to-female ratio of 12 : 13. Each participant data has manually segmented

labels. The Montreal Neurological Institute (MNI) and Hospital’s Ethics Committee

authorized the study. The data were acquired using a 3T Siemens Tim Trio MRI

scanner equipped with a 32-channel head coil. Submillimeter T1 and T2 images were

obtained for all participants. The 3D MPRAGE T1 image had a spatial resolution of

0.6×0.6×0.6mm3 (isotropic voxel size). The matrix size was 336×384, with a field of

view (FOV) of 201mm× 229mm and 240 axial slices at a slice thickness of 0.6mm.

The manual segmentation protocol for this dataset categorized the hippocampus

into three labels: subiculum (SUB), a combination of CA1, CA2, and CA3 (CA1-3),

and a combination of CA4 and DG (CA4/DG). The KY dataset was evaluated for

our investigation using a 5-fold cross validation. Different datasets have different

voxel spacings. To standardize the voxel spacing in the dataset, we registered the

images and transformed the labels corresponding to MNI template (1× 1× 1 mm3

T1-w, dimensions: 192× 224× 192, skull stripped) using FSL [272]. Then we skull

stripped all the volumes and performed n4 bias field correction. Finally, we normalize

all input images to have zero mean and unit standard deviation (std) based on non-

zero voxels only. We have merged the ground truths of left and right HC into a

single volume and trained our models to predict both the HC at once. In some

ground truth volumes, we found holes inside the hippocampus segmentation that

arised due to registration. We closed them using morphological closing operators.

For HC subfield segmentation, we used only KY dataset preprocessed using the steps

described in [282] that included cropping along the HC area and data augmentation

by left - right flipping. We got 50 samples having 100 axial slices with the length

and breadth same as mentioned earlier for T1 and T2 images. We could not use the

HarP dataset as it did not have ground truth annotations for subfields.
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7.7 Implementation Details

We implemented our networks in PyTorch [161]. We implemented our 3D UNet net-

work in PyTorch [161]. The training process was executed on an HP-Z640 worksta-

tion having Intel Xeon processor with 14 Cores, a Random Access Memory (RAM)

with capacity of 128GB along with a dedicated graphics processor unit (GPU) of

24GB with model name NVIDIA Titan RTX. Dice Similarity Score (DSC) is used

as the performance metric [126] as this is the common metric used by all other

competing methods. The higher the value of DSC, the better is the segmentation.

For whole HC segmentation: The cell size n (in Sec. 7.4.4) is set as 4. The

parameter λ (Eq. 7.10) is gradually increased from 0.1 to 0.5 in each epoch of

training. This is done to prevent the pooled gradient loss from incurring a huge

penalty at the beginning. We make the model learn the coarse HC region in the

beginning and then the fine HC shape at a later stage. The parameter β (in Sec.

7.4.4) is set to ±12◦. For this work, we divide a circle (see Fig. 7.3) into 8 equal

sectors and consider α as the central angle. For example, if α is 22.5◦, then all angles

within the range [22.5◦ − 12◦, 22.5◦ + 12◦] are considered. For the Attention Unet

model, we used Adam optimizer with a batch size of 8. We trained the model for

200 epochs with our custom loss function (in Eq. 7.10).

For HC subfield segmentation The network is trained for 100 epochs with

initial learning rate of 0.0001, weight decay of 0.00001 and mini-batch size equal

to 2 samples. We have used Adam Optimizer and dice loss in the process. Our

energy function does not have any parameters that need to be set manually, as all

the information is being provided by a trained UNet model. The only parameter κ,

which is used for thresholding the UNet probabilities to create a segmentation (as

described in Sec. 7.5.6) is set to, 0.5 which is the most common value as mentioned

in [309].
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Table 7.1: Comparison with state-of-the-art methods

Approach
DSC Time

(in secs)Harp KY
Level Set (2019) [274] 0.847 - -

MAS (2021) [273] 0.885 - 8.88
Hippodeep (2018) [310] 0.85 0.82 2

SWANS (2022) [311] 0.878 - 20
Hippmapp3r (2019) [277] 0.87 0.836 14
E2DHipSeg (2021) [312] 0.88 0.84 15

Subfield (2022) [313] 0.934 0.902 -
Shape SDM (2020) [281] 0.843 - -
Shape fitting (2020) [280] 0.856 0.92 150

Our Method 0.947 0.923 12

Table 7.2: Ablation study for the proposed loss function

Loss Function
DSC

Harp KY
Dice Loss 0.85 0.835

Dice + Pooled Gradient Loss 0.947 0.923

7.8 Experimental Results

In this section, we discuss the ablation studies conducted for whole HC segmentation

and HC subfield segmentation, followed by comparison with state-of-the-art methods

for both the segmentation tasks.

7.8.1 Whole Hippocampus Segmentation

(A) Ablation Study

We have conducted an ablation study to demonstrate the effectiveness of the pro-

posed loss function with that of the 3D Attention Unet having only Dice loss. The

DSC values in Table 7.2 clearly indicate that our proposed loss function has achieved

superior results on both the datasets over the Dice loss alone. Qualitative results

for a sample from the HarP dataset, as shown in Fig. 7.5, corroborate the same.
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Table 7.3: Ablation Study I: Comparison of segmentation performance of multi-class
graph cut, multi-class UNet, and the proposed method. Mean Dice Score of each
competing approach over all three classes are reported. Best values are shown in
bold.

Method Dice Score
Multi-class Graph Cut 0.64000 ± 0.073
Multi-class UNet 0.82000 ± 0.047
SMDGC (Ours) 0.91467 ± 0.009

(B) Comparisons with Other Methods

We have compared our method with as many as nine state-of-the-art segmentation

approaches from three different categories and the results are shown in Table 7.1.

Among these nine methods, two did not use any DL (marked in blue), five used

DL with regular loss functions like Dice or cross-entropy (marked in green) and

two applied DL with shape based loss functions (marked in red). Some methods

like Hippodeep, Hippmapp3r, E2DHipSeg and Subfield have used multiple datasets.

Hence, we re-implemented those works using HarP and KY datasets with their pub-

licly available codes. However, we left some blank entries in the KY column as

the corresponding works did not report Dice Scores for the KY dataset and had no

publicly available code for re-implementation. Results in the Table 7.1 clearly es-

tablish that the proposed method achieves state-of-the-art results by outperforming

all other competing methods and ranking third best in terms of the execution time.

7.8.2 Hippocampus Subfield Segmentation

(A) Ablation Studies

As mentioned earlier, we present three ablation studies for providing a better un-

derstanding of our solution. Table 7.3 shows the results of our first ablation study.

Here, we demonstrate the improvement our model brings over baseline multi-class

graph cut and multi-class UNet, applied in isolation. In Table 7.4, we first show

the performance of DGC [83] for multi-class segmentation, by adding to it tradi-

tional α-β swap. It is then demonstrated how the execution time improves due to
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Figure 7.5: Visual comparisons of ground truth segmentation with a model having
only dice loss and the same model having the proposed loss function: (a), (b) and (c)
represent the axial, sagittal and coronal views of the ground truth HC segmentation,
(d), (e) and (f) represent the same views of the predicted segmentation output of
the model with dice loss only, (dice score: 0.848), (g), (h) and (i) represent the
same views of the predicted segmentation of our proposed loss function (dice score:
0.927). The difference in prediction can be seen in (e) vs. (h) and in (f) vs. (i) and
is highlighted with yellow squares and yellow arrows respectively.

Table 7.4: Ablation Study II: Impact of deep learned α-β swap on the segmentation
performance. Mean Dice Score of each competing approach over all three classes are
reported. Best values are shown in bold.

Method Dice Score Time (in secs)
DGC [83] with α-β swap 0.88230 ± 0.032 15
DGC [83] with deep learned α-β swap 0.89860 ± 0.008 8
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Table 7.5: Ablation Study III: Impact of deep learned shape on segmentation per-
formance. Mean Dice Score of each competing approach over all three classes are
reported. Best values are shown in bold.

Method Dice Score
Graph cut with adaptive shape term [292] 0.85297 ± 0.026
SMDGC (Ours) 0.91467 ± 0.009

optimization of α-β swap strategy using learned information from UNet. The com-

putation time improves drastically improves by almost 50% when we use modified

α-β swap. DGC with normal α-β swap takes on average 15 seconds to segment one

3D sample, whereas, the modified α-β swap achieves the same goal in 8 seconds.

A slight improvement in the segmentation accuracy can also be noticed as more

informed decision is taken to change a label during a move due to the confidence of

UNet incorporated into the optimization strategy (Eq. 7.21).

We then analyze the impact of a shape term in a graph cut setup through Table

7.5. The first row shows the results, where an adaptive shape term is used but

without deep learning. For that, we re-implement [292] and add α-β swap moves,

as that work was originally developed for binary segmentation. We compare the

performance of this method with ours, where we have employed deep learned shape

information (Eq. 7.24). The values of the Dice Scores clearly illustrate the benefits

of a deep learned shape information.

As we can see, our proposed method performs better than rest of the ablation

entries and we can also see that each component has a major role to play in the

overall segmentation. Also, the segmentation computation time for our proposed

method is 8 seconds on average. Qualitative comparisons of different strategies used

in the three ablation studies are shown in figure 7.6. We only include the second

method of Table 7.4 as the improvement there is more in terms of execution time

to achieve desired segmentation, rather than the segmentation accuracy per se. In

Fig. 7.6, the visual improvements in segmentation performances clearly corroborate

the quantitative results. We specifically highlight how multi-class UNet and graph

cut with adaptive shape term suffers from over segmentation of CA1-3 and SUB,

as shown in the yellow boxes of the sagittal slices. DGC with modified α-β swap
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Figure 7.6: Qualitative ablation of our method. GT represents the ground truth.
Segmentation with color red represents CA1-3 class, blue represents the CA4/DG
class and green represents the SUB class.
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Table 7.6: Comparison with state-of-the-art methods. Mean Dice Score ± standard
deviation of Dice Score is reported for each class. Additionally, the overall mean
Dice Score is reported for each method. Best values are shown in bold.

Method CA1-3 CA4/DG SUB Mean

Syn SegNet (2023) [287] 0.865 ± 0.005 0.821 ± 0.014 0.821 ± 0.013 0.835

CAST (2020) [286] 0.917 ± 0.011 0.89 ± 0.017 0.881 ± 0.021 0.906

ResDUNet (2019) [283] 0.92 ± 0.011 0.879 ± 0.02 0.888 ± 0.018 0.896

UNet CNN (2022) [282] 0.9245 ± 0.01 0.8887 ± 0.023 0.898 ± 0.015 0.9

SMDGC (Ours) 0.933 ± 0.0070.9078 ± 0.0130.903 ± 0.0080.9146

also finds it difficult to decide among the CA1-3 and SUB, as shown in the yellow

box of its coronal slice. In general, CA4/DG is relatively difficult to segment by all

methods, as it is the smallest region among the three classes under consideration.

(B) Comparison with State-of-the-art Methods

We compare our proposed method with five state-of-the-art approaches (articles

published within the last five years). These methods are [287], [286], [283], [282],

and, [284]. We showed comparisons with only DL based approaches, as we did not

come across any work on multi-class HC segmentation using primarily graph cuts.

As can be clearly seen from the Table 7.6, our method has yielded the highest mean

Dice Score, which is marginally better than [284]. We are marginally behind [284]

in the SUB subfield segmentation, the most complex object to segment within HC.

However, our model requires much less computational resource, as we used plain 3D

UNet & graph cut while, other approaches used sophisticated DL models that takes

more time & resources to train.
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7.9 Appendix

Proof of Lemma 1: The product of a semi-metric and a metric

function is semi-metric.

Proof. Let ρ1 be a semi-metric function and ρ2 be a metric function defined on

some set X. Then, for any x, y, z ∈ X:

ρ1(x, z) ≤ ρ1(x, y) + ρ1(y, z)
(
∵ ρ1(x, z) is semi-metric

)
= c1 · (ρ1(x, y) + ρ1(y, z))

(
where c1 ≤ 1

)

ρ2(x, z) > ρ2(x, y) + ρ2(y, z)
(
∵ ρ2(x, z) is metric

)
= c2 · (ρ2(x, y) + ρ2(y, z))

(
where c2 > 1

)
Now, consider the product

ρ(x, z) = ρ1(x, z) · ρ2(x, z)

=
(
c1 (ρ1(x, y) + ρ1(y, z))

)
·
(
c2 (ρ2(x, y) + ρ2(y, z))

)
= c1c2ρ1(x, y)ρ2(x, y) + c1c2ρ1(x, y)ρ2(y, z)

+ c1c2ρ2(y, z)ρ1(x, y) + c1c2ρ2(y, z)ρ1(y, z)

Now, c1c2 > 1 when c1 = 1. Hence,

ρ(x, z) > ρ1(x, y)ρ2(x, y) + ρ1(y, z)ρ2(y, z) + ρ1(x, y)ρ2(y, z) + ρ2(y, z)ρ1(x, y)

> ρ(x, y) + ρ(y, z) + ω1 + ω2

where ω1 ≥ 0 and ω2 ≥ 0.

Therefore, ρ(x, z) > ρ(x, y) +ρ(y, z) when c1 = 1 which means ρ(x, z) does not obey

triangle inequality for some particular cases. Thus, the product of a semi-metric

and a metric function remains a semi-metric function.
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Proof of Theorem: BDGC(fx, fy) is a semi-metric.

Proof. BDGC is a product of four components as shown in Eq. 7.16. Among them,

K(x,y) and δ(x, y)DGC depends on probabilities. From Eq. 7.17, it is evident that

K(x,y) lie between [0, 1] whereas, from Eq. 7.18, δ(x, y)DGC lie between [0, 2]. Both

these functions satisfy points (1) and (2) of Sec. 7.5.3, i.e., Kx,y ⇔ x = y, Kx,y =

Ky,x ≥ 0 and similarly for δ(x, y)DGC . But they do not satisfy the triangle inequality

(point 3). If we consider three voxels x, y and z, then Kx,y, Ky,z and Kx,z can take

any value between [0, 1] and hence, there will be cases where K(x,z) > K(x,y) +K(y,z)

for some x, y and z. A similar situation can also occur in the case of δ(x, y)DGC .

Therefore, these functions are semi metric. For example, if we consider K(x,y) = 0.2,

K(y,z) = 0.3 and K(x,z) = 0.7, then K(x,z) > K(x,y)+K(y,z). Now, we consider the term

e−(
(Ix−Iy)2

2σ2 ), which is based on image intensities Ix and Iy. The intensity value lies

between [0, 255]. We can similarly argue that e−(
(Ix−Iz)

2

2σ2 ) > e−(
(Ix−Iy)2

2σ2 ) + e−(
(Iy−Iz)

2

2σ2 )

for some Ix, Iy and Iz. Thus, K(x,y), e
−(

(Ix−Iy)2

2σ2 ) and δ(x, y)DGC are semi metric in

nature, 1
d(x,y)

is metric as d(x, y) is the Euclidean distance. Hence, from Lemma 7.9

it follows that BDGC(x, y) is a semi-metric.

7.10 Summary

Segmentation of the hippocampus and its subfields is vital for diagnosing diseases

like Alzheimer’s and epilepsy, as treatment relies on analyzing subfield atrophy. Au-

tomating this process can significantly improve the treatment experience for both

doctors and patients. We propose advanced methods for whole and subfield segmen-

tation using a novel shape-driven loss function, a combination of multi-class graph

cuts with shape information, and deep learning. Using HoG based loss function for

whole hippocampus segmentation greatly improves the segmentation accuracy as it

is able to learn the shape well. Using shape prior in energy function of multi-class

graph cut helps to learn the shapes of the subfields as well. Our approach outper-

forms existing methods, as demonstrated by comparisons on a public dataset.
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Conclusion

In this thesis, we have addressed several problems in diagnosing neurological disor-

ders using computer vision. We have provided a detailed description of proposed

methods in the preceding chapters, with relevant qualitative and quantitative results

to validate the effectiveness of our solutions. In this chapter, we conclude the work

carried out in this thesis by highlighting the contributions, and then indicate possible

future research directions.

8.1 Concluding Remarks

The thesis consists of a total of eight chapters. We have three chapters on Intro-

duction (Chapter 1), Theoretical Foundations (Chapter 2), and Conclusion (this

chapter). The rest five chapters, Chapters 3 to Chapter 7, are devoted to specific

research problems in neuro-radiology.

We first focused on the brain tumors. Here, we primarily concentrated on the

detection, delineation, and characterization of 3D brain tumors using MR imaging,

which is crucial in guiding treatment strategies. We demonstrated how combining

UNet and graph cut achieves better segmentation performance in 3D. We derived

new expressions for the constituent terms in the graph cut energy function using

probability maps from the UNet. Through comprehensive experimentation, we es-

tablished that our proposed deep graph cut model yields competitive performance

on the publicly available BRATS dataset. Then we presented a brain tumor clas-
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sification strategy by combining deep features and Graph Convolutional Networks

(GCN). We showed that using both radiology and histopathology data achieves

state-of-the-art performance.

We next created a genetic marker prediction model that can predict the sta-

tus of five important bio markers (IDH, 1p/19q codeletion status, ATRX, MGMT,

and TERT), which are responsible for causing different types of brain tumors, from

Whole Slide Imaging (WSI) data. This simultaneous prediction ensures better prog-

nosis and treatment planning for patients. We harnessed different prevalent traits

(individual, pairwise, and group-wise behavior) in these biomarkers, as reported in

the scientific literature. We integrated conditional probability-based loss capturing

pairwise information and spectral graph-based loss modeling group behavior with

a multi-label weighted cross-entropy loss for individual traits (for the five genetic

markers) in the form of a composite loss function. Additionally, we created a bench-

mark dataset by integrating WSI and biomarker data, serving as a helpful testbed

for future research.

After that, we shifted our focus to classification of Alzheimer’s Disease (AD),

which is crucial for dementia diagnosis, especially in the aging population. We in-

troduced an automated solution for four-class classification of AD using efficient

processing of 3D Diffusion Tensor Imaging (DTI) data. Initially, we trained sep-

arate deep learning (VoxCNN) and machine learning (Random Forest) models on

different pieces of information in DTI scan volumes. Then, we combined the individ-

ual classification results using a modulated rank averaging decision fusion strategy.

Comprehensive experimentation on the ADNI database demonstrated the effective-

ness of our formulation, including comparisons and ablation studies.

Finally, we addressed the challenging problem of automated segmentation of the

hippocampus (HC) and its subfields, which significantly enhances the efficiency of

neuro-radiologists and aids treatment planning for neuro-surgeons, playing a vital

role in diagnosing and managing diseases like Alzheimer’s and Epilepsy. We intro-

duced a Histogram of Oriented Gradients (HOG) based loss function in an Attention

UNet for 3D segmentation of the HC, addressing the complex and irregular structure
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of the brain. To improve segmentation accuracy, we introduced a pooling function

to resolve the derivability issue of histograms in HOG. Additionally, we proposed a

state-of-the-art method for subfield segmentation, combining multi-class graph cuts

with shape information and deep learning, showcasing how deep learning enhances

shape knowledge and optimizes the α−β swap move. Our approaches outperformed

several state-of-the-art methods on publicly available datasets.

8.2 Graphical User Interface

We also developed a Graphical User Interface (GUI) application called ”Brain Anal-

ysis and Visualization App” to run some of our developed works, namely, 3D Brain

tumor segmentation and 3D Hippocampus Segmentation and which are described

in Chapter 3 and 7 respectively. Fig. 8.1 shows some screenshots of the applica-

tion, where a brain scan of a patient with a tumor is uploaded, and the tumor is

segmented.

8.3 Future Directions

Although we have addressed and proposed innovative solutions to challenging prob-

lems in the detection and diagnosis of neurological disorders, several advancements

in these directions can still be made.

Future research in brain tumor segmentation can involve incorporating more

recent datasets with various modalities like Computed Tomography and advanced

versions of MRI. More sophisticated performance metrics like Hausdorff distance

can be introduced for better analysis of segmentation performance. The proposed

approach can also be extended for multi-label tumor segmentation. With regard to

brain tumor classification, other modalities and tumor grades can be included to

perform a more comprehensive classification.

Future research on genetic biomarker detection will focus on incorporating ex-

plainability [314] into our proposed methods to make the model more trustworthy

and transparent for medical practitioners. The present model can be extended to
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Figure 8.1: Screenshots of the GUI showing the steps of uploading a brain scan,
segmentation and then visualizing the segmented tumor
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predict other important bio markers of the brain.

The Alzheimer’s Disease classification model can be extended to solve a six-

class AD classification problem by incorporating Mild Cognitive Impairment and

Significant Memory Concern stages [315]. Another direction of future research will

be to predict the next stage of AD progression with significant accuracy.

For Hippocampus segmentation, incorporation of shape-based loss functions to

better detect structures of varying shapes and sizes can be introduced. Additionally,

we will include more datasets with additional subfields to achieve more fine-grained

segmentation of the hippocampus, ultimately improving the diagnostic and treat-

ment processes for neurodegenerative conditions.
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