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Abstract—In this paper, we address the problem of brain
tumor classification from radiology and histopathology data.
A coarse-to-fine classification approach is adopted using a
combination of deep features and Graph Convolution Network
(GCN). As a first coarse step, we use 3D CNN to detect
Glioblastoma from MRI images. In order to infer about
Astrocytoma and Oligodendroglioma, Whole Slide Images
(WSI) are employed in the second stage. During this fine
classification stage, 2D CNN features are extracted at two
different (global and local) magnification levels. A graph is
constructed with nodes in the space of concatenated global
and local features. Edges are constructed from feature
similarity and graph topology. Finally, GCN is used with
normalized graph Laplacian to ensure better relation-
aware-representation leading to more accurate classification.
Experimental comparisons on the CPM-RadPath2020 challenge
dataset clearly demonstrate the state-of-the-art performance of
our proposed strategy. The code implementation is available at
https://github.com/arijitde92/BrainTumorClassification.

Index Terms - Brain tumor classification, MRI, WSI, Graph
Convolution Network.

I. INTRODUCTION
Gliomas are the most frequently occurring primary malig-

nant tumors of the central nervous system (CNS). Every year
approximately 100,000 new cases, diagnosed with Gliomas are
reported [1]. Although Magnetic Resonance Imaging (MRI) is
widely used to study the tumour and prepare treatment plans, it
cannot provide detailed depiction of gliomas (e.g. grading and
sub-typing) as the tumour micro-environment is quite complex
and spatial heterogeneity is not well reflected in MRI. Thus,
along with MRI, histopathology examination is often pre-
scribed [2]. In histopathology, glial cells exhibit morphological
characteristics like increase in cellularity, necrosis in tumour
region, vascular proliferation, and degeneration of normal
brain parenchyma due to tumour cell invasion. Availability of
such information makes histopathological data more amenable
for detailed classification of the gliomas [3], [4]. Histopatho-
logical classification of brain tumours is dependent on the
recognition of areas with the characteristic histopathology for
a particular tumour type. Classification of gliomas into astro-
cytoma, oligodendroglioma and glioblastoma is the foundation
upon which relies the prognosis, treatment and management

of the patient. Microscopic examination remains the gold
standard. However, there is great inter-observer variability
based on the subjective evaluation. Use of machine learning
algorithms utilising the particular histopathological character-
istics of individual tumours, independent of subjective analysis
can help reduce this diagnostic variability. With advances in
digital pathology and whole slide imaging, morphology based
automated pathologic diagnosis has become a reality.

The Computational Precision Medicine Radiology-
pathology challenge [5] opened the path for independent
researchers to develop classification techniques using their
publicly available dataset containing Whole Slide Images
(WSI) and MRIs in pairs. Sahayam et al. [6] used only
radiology data to perform classification which resulted in
lower classification accuracy. Chan et al. [7] applied a
random forest into clusters of WSI tiles grouped together
using unsupervised methods to classify gliomas. Xue et
al. and Pei et al. [8], [9] undertook tumor segmentation
followed by tumor classification on MRI volumes. The
three-way simultaneous classification yielded lower accuracy
than binary classification. Hamidinekoo et al. [10] also used
three-way simultaneous classification and applied 2D CNN
for both radiology and histopathology data. 2D CNN used
for slice-wise classification in 3D MRI volumes is inefficient
as 3D CNN captures more spatial information. Bagari et al.
[11] employed a soft-voting ensemble using both radiological
and histopathological data. The radiological model exploits
radiomics from MRI data and the histopathological model
uses patches extracted from WSIs filtered by an outlier
detection algorithm. So far, their classification technique is
the top-performing method. The second-best approach [12]
also used both MRI and WSI to create two separate models.
An end-to-end deep learning approach is used to classify the
radiological data, while the histopathological model uses deep
feature extraction from WSI data, to further classify a set of
extracted tiles. Ma et al. [13] used 3D DenseNet followed
by a regression model for classifying radiological data. For
classifying histopathological data, ResNet34 and ResNet50
were directly applied to extract features from WSI patches.
Pei et al. [14] used only radiological data to segment the
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tumor region and then classified it using a regular 3D CNN
model. They did not use the enormous information that could
be exploited from WSI.

In this paper, we propose a coarse-to-fine approach for
multi-modal tumor classification into glioblastoma, astrocy-
toma and oligodendroglioma using radiological as well as
histopathological images. Our main contributions are listed
below:

1) We apply a 3D CNN model for a coarse classification,
i.e. glioblastoma vs. non-glioblastoma (which could be
either astrocytoma or oligodendroglioma) from 3D MRI
volumes.

2) We construct a deep feature extraction model for WSI
using 2D CNN. Features from two different magnifica-
tion levels of the WSI are treated as local and global
features.

3) We employ Graph Convolutional Network (GCN) for
fine classification of non-glioblastoma into astrocytoma
and oligodendroglioma. A feature vector combining the
local and global features is used as a node. Edges are
constructed by considering both feature similarity and
graph topology.

II. PROPOSED METHOD

Our proposed method primarily performs a coarse to fine
classification consisting of three major steps, namely, i) ra-
diological data classification, ii) histopathological feature ex-
traction and iii) classification of histopathological data using
GCN. The overall flowchart of our classification technique is
portrayed in Fig.1. We first perform a coarse classification
from the radiological data by inferring presence or absence
of Glioblastoma. This is possible as Glioblastoma exhibit
distinctive macro features which can be identified from the
MRI data. However, 3D MRI volumes provide very little
information about tumor subtypes like oligodendroglioma and
astrocytoma. Fig. 2 demonstrates how Glioblastoma can be
identified radiologically but due to the lack of distinctive
radiological features in oligodendroglioma and astrocytoma,
they are difficult to be identified. So, we use histopathological
data for subsequent finer classification.

A. Radiological phase
In this step, we consider only radiological data, i.e., 3D

MRI volumes. Each subject has 4 different types of MRI,
namely, t1, t2, t1ce, and flair. We perform binary classification
by dividing the data into two groups for each MRI type, one
group consists of only glioblastoma subjects and the other
group consists of astrocytoma and oligodendroglioma subjects.

1) Data pre-processing: Each MRI volume is first corrected
using the N4 bias field correction algorithm [15], which is
widely used for correcting non-uniformity present in the MRI
data due to low frequency intensities. The original resolution
of each corrected volume was 240×240×155. Due to memory
constraints, this volume was down-sampled to a resolution
of 128 × 128 × 128 using cubic interpolation re-sampling
algorithm from SimpleITK library [16].

VoxCNN

Glioblastoma?

Glioblastoma (G)

2D WSI patch (Histopathology)

DenseNet161

Global features

(1000 dimensional)

Local features

(1000 dimensional)

17x Zoomed

Image

20x Zoomed

Image

DenseNet161

Concatenated features

(2000 dimensional)

Graph Convolutional 

Network (GCN)

Astrocytoma (A)

3D MRI Volume (Radiology)

Yes

No

Oligodendroglioma (O)Normal (N)

Fig. 1: Flowchart of our classification model.

2) Data augmentation: Since, the number of subjects be-
longing to each class is different we apply horizontal flipping
along the sagittal plane on the volumes belonging to minority
class to balance the samples of each class.

3) Classification model: The classification was based on
VoxCNN [17] with appropriate modifications. In this case,
VoxCNN is trained from scratch for each of the four MRI
types separately. Modulated rank averaging method is applied
next to perform weighted voting among the 4 MRI types to
arrive at the final prediction.

B. Histopathological phase
Patch selection for training the model is a very important

task as discriminative, noise-free patches will help the model
learn properly. The process is often time consuming and prone
to errors. Weakly-supervised approaches [18] only use the
slide labels during the training of the aggregation model. In
contrast, we adopted a semi-automated approach for optimal
selection of tiles.

1) Patch selection: To select the most important tiles to
classify WSIs, we have adopted a two-stage approach.
Stage 1: We extract tiles/patches of size 1000 × 1000 pixels
without any overlaps from each WSI using deep zoom ex-
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(a) (b) (c)

Fig. 2: Axial flair MRI images of (a) Glioblastoma Multiforme, (b) Astrocytoma, (c) Oligodendroglioma. It can be seen in
case of (a) the tumor region has thick demarcations with a central dark necrotic region and an irregular whitish edema region
while in cases of (b) and (c) there is no such distinctive feature

tractor provided in the openslide framework [19]. Each WSI
produces patches from different magnification levels. We se-
lect two such levels for our work. The first one has the highest
level of magnification (20x) representing the local features and
the other is 3 times zoomed out (17x), representing the global
features. After experimentation, we found selecting two such
levels give the best representation of each WSI.
Stage 2: The histopathology images contain patches that
include air bubbles, cracks, and blurred regions. We remove
those tiles by studying the histogram of the images. For this
purpose, we devised an automated technique selecting only
those images that have a balanced histogram, i.e., those images
that have higher number of pixels between intensity range 0
- 192 than those in the range 192 - 255 in all three color
channels. After careful observations, we found that the artifacts
mentioned above are mostly grayscale and hence have most
of the pixels with intensity greater than 192 in all three
channels. Here the lowest intensity 0 represents white and
highest intensity 255 represents black.
Stage 3: Even after removing unnecessary patches, some of
them do not contain the necessary cellular information as the
tumor has not spread through out the whole tissue scanned in
the laboratory. Some regions had healthy cells while others had
tumor cells distinctly visible. Our neuro-pathologists manually
select patches that contain only healthy cells labelled as ’N’
(normal) and patches that contain more than 80% tumor cells,
labelled as ’A’ (astrocytoma) or ’O’ (oligodendroglioma).
Example images of normal, glioblastoma, astrocytoma and
oligodendroglioma at two different magnification levels are
shown in Fig. 3. We have selected equal number of patches for
each class from each magnification level to prevent class im-
balance. The extracted tiles were visually inspected randomly
to ensure that the training set is free of false tiles.

2) Deep feature extraction: We apply DenseNet model [20]
with 161 layers to extract the deep features from each patch.
We chose DenseNet over other popular neural networks like
VGGNet or ResNet because DenseNet is more complex than
VGGNet and achieves better results using fewer parameters
than ResNet. The last two layers of DenseNet are modified to

extract features of 1000 dimensions. The model is trained to
classify among three classes (‘A’, ‘O’ and ‘N’). Let the feature
vector Fi for an image i (i = 1, · · · ,M ) be represented as:

Fi = [F
(1)
gi , · · · , F (1000)

gi , F
(1)
li , · · · , F (1000)

li ] (1)

F
(j)
gi =

∑S
x=1 F

(j)
gx

S
, j = 1, · · · , 1000;x ∈ i (2)

and

F
(j)
li =

∑T
x=1 F

(j)
lx

T
, j = 1, · · · , 1000;x ∈ i (3)

Here, Fi = [F
(j)
i , j = 1, · · · , df ] (df = 2000) is obtained by

concatenating 1000 dimensional global feature vector Fgi =

[F
(j)
gi , j = 1, · · · , 1000] and the 1000 dimensional local feature

vector Fli = [F
(j)
li , j = 1, · · · , 1000]. Total number of patches

(x denotes a patch) at the global level is denoted by S and
that at the local level is denoted by T . For this work, S = 150
and T = 1000. For each component of the global and local
feature vector, averaging is done over all the patches.
C. Graph Convolutional Network

To achieve more precise and accurate classification, graph
convolutional network (GCN) is employed which can effec-
tively capture the relation-aware representation (RAR). Most
of the classification models provide attractive results when
provided with a huge set of labeled samples. However, GCN
can perform well with fewer training samples, which is the
case for the present problem. RAR can provide the necessary
information to guide the training with fewer examples. GCN
can help generalize the standard convolution operation to
graph convolution [21].

1) Graph Construction: We construct a graph G =
G(V,E), with M nodes vi ∈ V, i = 1, · · · ,M and a number
of edges eij = (vi, vj) ∈ E. Here each node vi is represented
by the concatenated feature vector Fi and M denotes the
number of image samples in training set. The adjacency matrix
A defines the relationships (or edges) between the vertices.
We construct edges between nodes by considering the feature
similarity of the nodes as well as by respecting graph topology.
Such constructions make the graph informative and sparse
leading to better accuracy with high computational efficiency.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Histopathology images of (a) normal, (b) glioblastoma, (c) astrocytoma and (d) oligodendroglioma cells with global
magnification level (20x). Corresponding images (e), (f), (g) & (h) are shown with local magnification level (17x).

Feature similarity between two nodes vi and vj is captured by
employing a RBF kernel Ri,j in the following manner:

Ri,j =

1 if exp
(
− ∥vi−vj∥2

δ2

)
> λ

0 otherwise
(4)

Here, δ is a parameter which controls the width of the RBF
kernel and λ is the similarity threshold. Both the parameters,
δ and λ are set experimentally.

We next set edge connections from graph topology by
analyzing the nature of labelled nodes within a certain neigh-
borhood of an unlabelled node (20 % of the total vertices
are unlabelled). The kNN algorithm is applied to obtain k
neighbors with k =

√
M . Let, Nk(vi) denotes the set of k

neighbors for the node vi. Further, let N
(c)
k (vi) denote the

set of neighbors having class label c within its k neighbors.
We then compute the probability of the node vi to belong
to a class c as p(v

(c)
i ) = |N (c)

k (vi)|/|Nk(vi)|. Here, c = 1
denotes Astrocytoma class, c = 2 denotes Oligodendroglioma
class and c = 3 denotes Normal class. We now formulate the
following three conditions:

1) Two labelled nodes are connected only if they belong to
the same class.

2) An unlabelled node vi is connected to a labelled node
vj if the probability of vi to belong to the class c of vj
exceeds a certain threshold. So, eij maybe constructed
if vj ∈ c and p(v

(c)
i ) > ζ, where, ζ is an experimentally

chosen threshold and c = 1, 2, 3.
3) Two unlabelled nodes vi and vj are connected if both

of them have similar affinities to belong to the different
classes. We compute the difference of probabilities of
these two nodes to belong to the three different classes
and examine if the maximum of these differences falls
below a certain threshold. Therefore, eij maybe con-
structed if max(|p(v(c)i )−p(v

(c)
j )|) < ω with c = 1, 2, 3.

We set the threshold ω experimentally.

Thus, the spatial connectivity between any two nodes vi and
vj can be represented as:

Si,j =

{
1 if condition (1) or (2) or (3) is met
0 otherwise

(5)

Now, to construct the adjacency matrix A, each element in A
is computed in the following way:

Ai,j =

{
1 if Ri,j = 1 and Si,j = 1

0 otherwise
(6)

We next obtain the graph Laplacian matrix L as follows:
L = D −A (7)

where D is a diagonal matrix representing the degrees of
A, i.e., Di,i =

∑
j Ai,j . GCNs make use of the eigen-

decomposition of graph Laplacian matrix to implement in-
formation propagation within graph [21]. The symmetric nor-
malized Laplacian matrix (Lsym) is used as shown below to
amplify the generalization ability of the graph.

Lsym = D− 1
2LD− 1

2

= I −D− 1
2AD− 1

2

(8)

where I is the identity matrix. Thus, GCN is able to apprehend
the RAR feature [22].

2) Graph Convolutional Layers: GCN is used primarily to
express G through a neural network model f(X,A) in which
X ∈ RN×df . Mathematically, all feature representation for all
nodes are updated by a multi-layer GCN via the layer-wise
rule:

H(l+1) = σ(LsymH(l)W (l)) (9)

where σ is the ReLU function. H(l) ∈ RN×dl stands for the
feature representation of lth layer. Considering X = H(0), a
two-layer GCN (2L-GCN) has the following layers:

H(1) = σ(Lsym ×W (0)) (10)

H(2) = σ(LsymH(1)W (1)) (11)
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where, W (0) ∈ Rd0×d1 and W (1) ∈ Rd1×d2 are two trainable
weight matrices. The node feature set V and the adjacency
matrix A are passed to a 2L-GCN to obtain H(2) ∈ RN×D

where D = df . Then, a dot product of H(2) and I is computed
as given by:

y = H(2)I (12)

Finally, through a linear projection (LP) with trainable weights
W (2) ∈ RN×NC , we obtain:

z = yW (2) +W b (13)

Here z ∈ RNC , Nc is the number of classes and W b

represents the bias. For this problem NC = 3. Note that only
(W (0),W (1),W (2)) and linked biases needs to be trained for
this two layered GCN. We use a cross entropy loss for three
classes to train the network and update the parameters.

III. EXPERIMENTAL RESULTS

A. Dataset
To train and validate our pipeline, we used the CPM-

RadPath 2020 challenge dataset [23]. The dataset consists
of multi-institutional paired MRI scans and WSIs of brain
gliomas, obtained from the same patients. Each subject,
belongs to one of the following class- ’A’ (astrocytoma),
’O’ (Oligodendroglioma) and ‘G’ (Glioblastoma). The dataset
contains 255 co-registered radiology and histopathology sub-
jects respectively split into 221 samples in training set and
remaining 34 in testing set. The radiology data consists of
four modalities: t1, t2, t1ce, and flair. The data is distributed
after pre-processing, co-registering to the same anatomical
template, interpolating to the same resolution (1mm3), and
skull-stripping of each and every subject. The histopathology
data consists of one WSI for each subject, captured from H&E
stained tissue specimens.

B. Training VoxCNN, DenseNet and GCN
All the computations are done in HP Z640 Workstation with

Intel Xeon 14-core Processor having 128GB Random Access
Memory (RAM) and NVIDIA Titan RTX 24GB Graphics
processor using PyTorch 1.9 [24] and PyTorch Geometric [25]
in Ubuntu 20.04. For the radiological classification (Section
II-A3), the batch size, learning rate and total number of epochs
are 16, 27× 10−6 and 200 respectively. For the histopatholgy
image classification (Section II-B2), each image was resized
to 224 × 224 as required by the DenseNet model. The batch
size, learning rate and total number of epochs are 32, 3×10−7

and 300 respectively. For the construction of the adjacency
matrix required to train GCN (Section II-C1), the δ, λ, ω
and ζ parameters are experimentally set to 5, 0.75, 0.1 and
0.6 respectively. The GCN is trained for 1200 epochs with
a learning rate of 3 × 10−4. Adam optimizer and cross
entropy loss function are used for 3D CNN, 2D CNN and
GCN. The implemented code is available for reproducibility
at https://github.com/arijitde92/BrainTumorClassification.

TABLE I: Optimal Magnification Levels for Global and Local
Features

Combination Accuracy (%)
15x and 20x 87.3
13x and 17x 81.7
17x and 20x 91.4

TABLE II: Impact of ω on Classification Accuracy

ω Accuracy (%)
0.1 91.4
0.15 90.7
0.2 90.2
0.25 89.6
0.3 88.3
0.4 87.5
0.5 85.2

C. Optimal Parameter Setting
We first show in table I that using 2D histopatholgy images

with magnification levels of 17x and 20x achieves optimal
classification accuracy as compared to using other combina-
tions of 15x & 20x and 13x & 17x. We next demonstrate
through Fig. 4, that optimal values of λ and δ, used in edge
building with RBF kernel are 0.75 and 3 respectively. Finally,
optimal values of the parameters ζ and ω, used for edge
construction from graph topology are determined. Tables II
and III respectively show the optimal values of ω and ζ to be
0.1 and 0.6 respectively.
D. Ablation Studies

We have conducted two ablation studies. The first ablation
study reveals the impacts of individual modalities, i.e., ra-
diology and histopathology. As can be seen from Table IV
the proposed model which combines 3D MRI and 2D WSI
data achieves the highest accuracy compared to 3D MRI and
2D WSI applied in isolation. In the second ablation study,
we compare the individual impacts of the two different edge
building approaches (as proposed in Sec II-C1) and show the
performance to be best when both feature similarity and graph
topology are combined together. The results are included in
Table V. We have also tested the potential of the MRI com-
ponent of our solution for a 2-class brain tumor classification
task as a recent work reported similar classification results in
2D on a different dataset [26]. We achieve an accuracy of
88.57% whch is slightly higher than the accuracy of 88% as
reported in [26].

E. Comparisons with Deep Baseline Models
Keeping the workflow structure same as shown in Fig. 1,

we ran our experiments with some deep baseline models like

TABLE III: Impact of ζ on Classification Accuracy

ζ Accuracy (%)
0.3 87.23
0.4 88.76
0.5 90.37
0.6 91.4
0.7 89.53
0.8 86.5
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Fig. 4: Impact of δ and λ on classification accuracy

TABLE IV: Ablation Study I: Impact of MRI and WSI

Approach F1
Score

Cohen’s
Kappa

Balanced
Accuracy

MRI Only 0.668 0.632 0.76
WSI Only 0.812 0.787 0.86
MRI+WSI 0.914 0.871 0.914

TABLE V: Ablation Study II: Impact of Feature Similarity
and Graph Topology for Edge Construction

Approach F1
Score

Cohen’s
Kappa

Balanced
Accuracy

Feature Similarity only 0.903 0.862 0.904
Graph Topology only 0.885 0.826 0.886
Both 0.914 0.871 0.914

ResNet [27], DenseNet [20] and MobileNet V3 [28]. For
predictions on the test set, we first used radiology (MRI)
data to determine the Glioblastoma cases using modulated
rank averaging technique used in [17]. We then used the
histopathology (WSI) data of the non-Glioblastoma cases to
classify among Astrocytoma and Oligodendroglioma along
with Normal (healthy) images. For the sake of comparison,
we replaced both VoxCNN and GCN first with ResNet, then
with DenseNet, and finally with MobileNet V3. As can be
seen from Table VI, performances of all the three baseline
deep networks are found to be quite inferior as compared
to our method. This is mainly because VoxCNN is able to
learn better features than these deep networks while classifying
radiology data. Furthermore, an informative graph constructed
using feature similarity as well as graph topology has resulted
in better classification accuracy.
F. Comparisons with State-of-the-Art Approaches

We now show comparisons with eight state-of-the-art mod-
els in Table VII. Like other reported works, we have evaluated

TABLE VI: Comparison with Deep Baseline Models

Approach F1
Score

Cohen’s
Kappa

Balanced
Accuracy

ResNet50 0.794 0.652 0.82
DenseNet169 0.794 0.665 0.835
MobileNet V3 0.705 0.491 0.702
Ours 0.914 0.871 0.914

TABLE VII: Comparison with State Of The Art Models

Models F1
Score

Cohen’s
Kappa

Balanced
Accuracy

Sahayam et al. [6] - - 0.754
Chan et al. [7] - - 0.78
Xue et al. [8] - - 0.849
Pei et al. [9] 0.886 0.801 0.8
Momemi et al. [12] - - 0.85
Hamidinekoo et al. [10] 0.886 0.811 0.860
Wang et al. [29] 0.943 0.903 0.889
Bagari et al. [11] - - 0.9
Ours 0.914 0.871 0.914

our model using three different metrics, namely, F1-Score
(micro averaged), Cohen’s Kappa and Balanced Accuracy. As
the results demonstrate, we have clearly surpassed [6], [7],
[8], [9], [10] in terms of all the three measures. We have
outperformed [29] in terms of the balanced accuracy but have
marginally lost in terms of F1 score and Cohen’s Kappa.
Further, our method yielded superior results than both the best
[11] and the second best [12] teams on the CPM RadPath
Challenge [5].

IV. CONCLUSION

In this paper, we have addressed the problem of multi-
class classification of brain tumors using both MRI and
histopathology data using a coarse-to-fine approach. We em-
ployed VoxCNN for MRI based coarse classification of the
gliomas into Glioblastoma and non-Glioblastoma. Graph con-
volutional network is employed for fine classification of non-
Glioblastoma into Astrocytoma and Oligodendroglioma along
with normal (healthy) class from the histopathology data. We
demonstrated how a better graph for GCN built using feature
similarity and graph topology can yield accurate results. Ex-
perimental comparisons clearly reveal that our proposed model
could achieve state-of-the-art performance. In future, other
modalities and tumor grades will be included to perform a
more comprehensive classification.
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