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ABSTRACT
Hippocampus (HC) segmentation plays a key role in di-
agnosis of predominant neuro-degenerative diseases like
Alzheimer’s, Parkinson’s and common neurological disor-
ders like Epilepsy. In this paper, we propose a solution to
the 3D HC segmentation problem from the MRI data using
shape driven loss function and attention Unet. In particular,
a Histogram of Oriented Gradients (HOG) based formulation
is developed to extract shape features. We suggest a pool-
ing technique as a substitute to the histogram calculation for
HOG. This is to address the problem that histogram is not
derivable thereby making the error in a loss function from
histogram unsuitable for back propagation in deep learning
models. The performance of our proposed model is validated
on two publicly available datasets, namely, HarP and Kulaga-
Yoskovitz (KY). Our segmentation accuracy with a dice
similarity score of 0.947 and 0.923 in HarP and KY respec-
tively is found to outperform the attention UNet model with
only Dice loss, and, a number of state-of-the-art approaches.

Index Terms— Hippocampus Segmentation, HOG fea-
tures, Attention Unet, Majority Pooling, Loss function.

1 Introduction
The hippocampus (HC) is a bilateral brain structure located
in the medial temporal lobe at both sides of the brainstem
near the cerebellum. HC is a very intricate and heterogeneous
structure broadly divided into several sub-fields, namely,
subiculum, cornu ammonis (CA1/2/3/4), and dentate gyrus
(DG). Alzheimer’s Disease (AD), Parkinson’s Disease (PD),
autism, multiple sclerosis, and natural ageing affect the HC.
Stages of AD affect hippocampal sub-fields differently. The
atrophy of stratum radiatum/stratum lacunosum-moleculare
(SRLM) apical dendrites of hippocampal CA1 closely mirrors
episodic memory impairment in AD as well as PD patients
[1]. HC atrophy study may give biomarkers and improved
techniques for detecting and predicting AD and other neu-
rodegenerative illnesses. So, segmentation of HC assumes
paramount importance in neuroradiology.

The result of manual segmentation is usually regarded as
the gold standard because of its high accuracy. But, such a
strategy becomes extremely time-consuming and laborious.
This high expense of manual segmentation has prompted the
development of efficient automation techniques. FreeSurfer
(FSL) [2] was one of the early attempts. FSL is capable of
producing decent coarse segmentation. However, it lacks
finer details and accurate edge delineation. Some other
noteworthy works attempted HC segmentation using atlas
registration [3] and level sets [4], but they were in 2D and
did not perform well in 3D. In recent times, several deep
learning (DL) techniques have been used to improve HC seg-
mentation. In recent times, Convolutional Neural Networks
(CNN) gained popularity over previous semi-automatic and
automated approaches for HC segmentation [5].

Medical imaging lacks consistent and sufficient annotated
data, making DL algorithms performing sometimes below par
[6]. To circumvent this limitation, shape-driven DL algo-
rithms have evolved, which can combine CNN-learned deep
features with structural shape information, to boost the perfor-
mance [7]. Only a few shape-based HC segmentation studies
are reported till date. Brusini et al. [8] employed shape fitting
and UNet to segment the HC. However, they used three 2D
models instead of one 3D model, which requires more train-
ing time. Others like Tang et al. [9] have employed signed
distance maps (SDM) to build loss functions that penalise
Dice loss and SDM values. The above technique estimated
loss by training a model to predict SDM and calculating dice
loss between the predicted and the ground truth SDM. This
required additional model training.

In this paper, we propose a novel shape-based DL strategy
for HC segmentation. Contour directional information is in-
corporated to create a shape based model using Histogram of
Oriented Gradients (HOG). HOG [10] is an excellent feature
descriptor that can extract shape as well as structural informa-
tion from an image by computing magnitude and angle gradi-
ents. The application of using HOG with deep learning is well
demonstrated in [11]. We took inspiration from [12] while
developing the formalism. We have further suggested an effi-
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cient pooling to tackle the derivability problem of histogram
in HOG. Normal pooling methods like max-pool, min-pool
and average-pool may not yield desirable results in this situa-
tion. Our main contributions are summarized below -

1. We have incorporated shape based loss using 3D gradi-
ent magnitude and gradient angles of HoG to find the
3D HC boundary along with directional information.

2. A 3D weighted majority pooling technique, that can act
as a substitute for histogram operation on tensor data,
is developed. This can be implemented in DL models
as it is derivable.

3. Our proposed solution for HC segmentation can pro-
vide highly accurate results in 3D. This can reduce the
diagnosis time and expedite the surgical planning.

2 Proposed Method
In this section, we describe our proposed method. The block
diagram showing the overall method is presented in Fig. 1.

2.1 Attention UNet
3D Unet [13], a deep fully convolutional encoder-decoder
network architecture has gained popularity for voxel-wise
segmentation. In this work, we utilise the Attention based
UNet as described in [14]. The authors in [15] have argued
that it is one of the best Unet models in terms of accuracy,
number of parameters, training and inference time. The at-
tention mechanism is necessary for training our model with
a focus on the HC region. This focus has to be explicitly
induced due to the inherent difficulty in distinguishing HC
from its neighboring tissues, which exhibit similar contrast.

Our Attention Unet model has a depth of 4 and takes as
input a 3D single channel tensor of dimension (1× height×
width× depth). The model outputs a 3D single channel ten-
sor of same dimensions containing the segmentation mask.
We use batch normalization for each convolutional layer fol-
lowed by ReLU activation.

2.2 3D HOG Features
HOG is a well-known feature descriptor which is able to ex-
tract structural and shape information [10]. It is better than
other edge descriptors as it uses magnitude as well as angle
of the gradient to compute the features. Since, we deal with
3D volumetric images, we use 3D feature descriptors which
are shown to carry more information than their 2D counter-
parts [16].

We first extract gradients from an image volume A of di-
mension h×w× d; where h, w and d respectively denote the
height, width and depth of A. We calculate Gx, Gy and Gz ,
the gradient matrices along the x, y and z dimensions respec-
tively by convolving A with a block of 3× 3× 3 kernel. The
elements of the matrices are as follows:

Gx(i, j, k) = I(i+ 1, j, k)− I(i− 1, j, k)

Gy(i, j, k) = I(i, j + 1, k)− I(i, j − 1, k)

Gz(i, j, k) = I(i, j, k + 1)− I(i, j, k − 1)

(1)

Here, i, j, k denote coordinates along the x, y, z directions.
I(i, j, k) is the intensity at A(i, j, k). We build three matrices
denoting the magnitude (Vµ), the azimuth angle (Vθ) and the
zenith angle (Vφ) of the gradient. The elements of the matri-
ces are respectively given by:

Vµ(i, j, k) =

√
Gx

2 +Gy
2 +Gz

2 (2)

Vθ(i, j, k) =

∣∣∣∣tan−1Gy
Gx

∣∣∣∣ (3)

Vφ(i, j, k) =

∣∣∣∣cos−1Gz
Vµ

∣∣∣∣ (4)

Naturally, each of Vµ, Vθ, Vφ has the dimension of A, i.e.,
(h× w × d).

2.3 Majority Pooling
The histogram, which is an integral part of HOG, is not a
derivable function. This is a critical problem as for deep
learning models, we need derivable functions to back prop-
agate the loss. Hence, we present a novel majority pooling
technique that pools the magnitude of the voxels with the
most frequently occurring angle (separately in Vθ & Vφ).

We first divide the three matrices Vµ, Vθ & Vφ into
n × n × n voxel grids (smaller matrices). So, each grid will
contain h

n ×
w
n ×

d
n voxels. Let us consider the total number

of such grids as g. Then, we can write Vµ = [v1µ, v
2
µ, . . . , v

g
µ]

where the smaller matrices v1µ, v
2
µ, . . . , v

g
µ are constructed

row-wise with a stride of n and each of them has dimensions
n × n × n. Similarly, we write Vθ = [v1θ , v

2
θ , . . . , v

g
θ ] and

Vφ = [v1φ, v
2
φ, . . . , v

g
φ]. We next construct two sets ψθ and

ψφ to respectively select the voxels from vsθ and vsφ that have
non-zero magnitudes in the corresponding location of vsµ
(s = 1, 2, . . . g). So, we write:

ψθ = {vsθ(i, j, k)|vsµ(i, j, k) > 0}
ψφ = {vsφ(i, j, k)|vsµ(i, j, k) > 0}

(5)

where, vsθ(i, j, k), v
s
φ(i, j, k) and vsµ(i, j, k) is the value at lo-

cation (i, j, k) of these matrices (i = 1 . . . n, j = 1 . . . n, k =
1 . . . n). We now find the most frequently occurring angle α
from ψθ and save the voxel location of all the angles in the
range [α − β, α + β] (see Fig. 2) into Mθ, where Mθ ⊂ ψθ.
This is done to pool magnitude values from vsµ with corre-
sponding angles in vsθ that are equal to or close to α. This
range is suitable as the gradient directions of all the angles
within this range give a similar idea about the main direction
of that region. We construct Mφ likewise, where, Mφ ⊂ ψφ.

Finally, we create matrices psθ, psφ to pool only those val-
ues from vsµ contained in Mθ and Mφ respectively and set the
values at other locations to zero. So, we write:

psθ(i, j, k) =

{
vsµ(i, j, k) if (i, j, k) ∈Mθ

0 otherwise

psφ(i, j, k) =

{
vsµ(i, j, k) if (i, j, k) ∈Mφ

0 otherwise

(6)
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Attention UNet HOG with
 Majority Pooling

3D Ground
Truth (gt)

pred

gt

Calculate Pooled
Gradient Loss

Ppred

Pgt

Calculate Dice
Loss

+

Ldice

LP

L = Ldice + λLP

Backpropagated

3D Input
Image

Fig. 1: Block diagram of our proposed approach: pred denotes the predicted output of Attention Unet model and gt denotes the
ground truth. Ppred and Pgt are the pooled gradients of predicted and ground truth respectively, as shown in Eq. 8.

Fig. 2: Figure showing the range of angles considered for se-
lecting the voxels from vsθ and vsφ. If α is the most frequently
occuring angle, then all angles in range α±β are considered.

where psθ(i, j, k) is the value at location (i, j, k) of psθ and
similarly for psφ. All psθ (s = 1 . . . g) of dimension n × n ×
n are concatenated row-wise to form the pooling matrix Pθ
of dimension h × w × d. We construct Pφ likewise. We
perform an element-wise addition of Pθ and Pφ to build the
final pooled gradient matrix P :

P = Pθ + Pφ (7)

The above pooled matrix contains gradient magnitudes of
only those regions that have voxels with dominating angles
in that region. Hence, it represents an approximate surface
of the object with angular dominance capturing the shape
information.

2.4 A Shape based Loss Function
Let us denote the output of 3D pooled gradient matrix from
the ground truth mask as Pgt and that from the predicted mask
as Ppred. Thus, the loss function can be calculated as the
error/difference between Pgt and Ppred. We can represent the
loss function based on the pooled gradient matrix as

LP =
√
‖Pgt − Ppred‖2 (8)

The above loss function focuses on the shape of the predicted
mask and penalizes on the dissimilarity of the shape of the
prediction. However, we also need to focus on the overall

structure and region for correct prediction. So, we use the
Dice Loss [17] along with our pooled gradient loss to build a
composite function. This composite loss function is given by:

L = Ldice + λLP (9)
where λ denotes a weight with value in (0, 1] and is adjusted
experimentally.

3 Experimental Results
In this section, we first discuss the data preparation and imple-
mentation details, followed by an ablation study and finally
we show comparisons with several state-of-the-art methods.
We implemented our network in PyTorch [18] and trained it
on NVIDIA Titan RTX 24GB GPU. Dice Similarity Score
(DSC) is used as the performance metric [17] as this is the
common metric used by all other competing methods.

3.1 Data Preparation
Two publicly available datasets, namely, HarP [19] and
Kulaga-Yoskovitz [20] were used for our experiments. Both
of them contains T1-weighted MRI volumes with ground
truth. The complete release of HarP includes 135 T1-
weighted MRI volumes which we divided into 80% train-
ing, 10% validation, and 10% testing. Kulaga-Yoskovitz
(KY) dataset comprises 25 participants with manually seg-
mented labels. Each subject’s MR data consists of isotropic
3D-MPRAGE T1-weighted (0.6mm3) and anisotropic 2D
T2-weighted images. Only the former were evaluated for our
investigation using a 5-fold cross validation.

Different datasets have different voxel spacings. To stan-
dardize the voxel spacing in the dataset, we registered the im-
ages and transformed the labels corresponding to MNI tem-
plate (1 × 1 × 1mm3 T1-w, dimensions: 182 × 218 × 182,
skull stripped) using FSL [2]. Then we skull stripped all the
volumes and performed n4 bias field correction. Finally, we
normalize all input images to have zero mean and unit stan-
dard deviation (std) based on non-zero voxels only. We have
merged the ground truths of left and right HC into a single vol-
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Table 1: Comparison with state-of-the-art methods

Approach DSC Time
(in secs)Harp KY

Level Set (2019) [4] 0.847 - -
MAS (2021) [3] 0.885 - 8.88

Hippodeep (2018) [21] 0.85 0.82 2
SWANS (2022) [22] 0.878 - 20

Hippmapp3r (2019) [5] 0.87 0.836 14
E2DHipSeg (2021) [23] 0.88 0.84 15

Subfield (2022) [24] 0.934 0.902 -
Shape SDM (2020) [9] 0.843 - -
Shape fitting (2020) [8] 0.856 0.92 150

Our Method 0.947 0.923 12

Table 2: Ablation study for the proposed loss function

Loss Function DSC
Harp KY

Dice Loss 0.85 0.835
Dice + Pooled Gradient Loss 0.947 0.923

ume and trained our models to predict both the HC at once.

3.2 Implementation Details
The cell size n (in Sec. 2.3) is set as 4. The parameter λ
(Eq. 9) is gradually increased from 0.1 to 0.5 in each epoch
of training. This is done to prevent the pooled gradient loss
from incurring huge penalty at the beginning. We make the
model learn the coarse HC region in the beginning and then
the fine HC shape at a later stage. The parameter β (in Sec.
2.3) is set to ±12◦. For this work, we divide a circle (see Fig.
2) into 8 equal sectors and consider α as the central angle.
For example, if α is 22.5◦, then all angles within the range
[22.5◦ − 12◦, 22.5◦ + 12◦] are considered. For the Attention
Unet model, we used Adam optimizer with a batch size of 8.
We trained the model for 200 epochs with our custom loss
function (in Eq. 9).

3.3 Ablation Study
We have conducted an ablation study to demonstrate the ef-
fectiveness of the proposed loss function with that of the 3D
Attention Unet having only Dice loss. The DSC values in
Table 2 clearly indicate that our proposed loss function has
achieved superior results on both the datasets over the Dice
loss alone. Qualitative results for a sample from the HarP
dataset, as shown in Fig. 3, corroborate the same.

3.4 Comparisons with Other Methods
We have compared our method with as many as nine state-
of-the-art segmentation approaches from three different cate-
gories and the results are shown in Table 1. Among these nine
methods, two did not use any DL (marked in blue), five used
DL with regular loss functions like Dice or cross-entropy
(marked in green) and two applied DL with shape based loss

Fig. 3: Visual comparisons of ground truth segmentation with
a model having only dice loss and the same model having the
proposed loss function: (a), (b) and (c) represent the axial,
sagittal and coronal views of the ground truth HC segmenta-
tion, (d), (e) and (f) represent the same views of the predicted
segmentation output of the model with dice loss only, (dice
score: 0.848), (g), (h) and (i) represent the same views of the
predicted segmentation of our proposed loss function (dice
score: 0.927). The difference in prediction can be seen in (e)
vs. (h) and in (f) vs. (i) and is highlighted with yellow squares
and yellow arrows respectively.

functions (marked in red). Some methods like Hippodeep,
Hippmapp3r, E2DHipSeg and Subfield have used multiple
datasets. Hence, we re-implemented those works using HarP
and KY datasets with their publicly available codes. However,
we left some blank entries in the KY column as the corre-
sponding works did not report Dice Scores for the KY dataset
and had no publicly available code for re-implementation.
Results in the Table 1 clearly establish that the proposed
method achieves state-of-the-art results by outperforming all
other competing methods and ranking third best in terms of
the execution time.

4 Conclusion
Automated segmentation of the HC is found to be immensely
helpful in improving throughput of neuro-radiologists as well
as in fast treatment planning for neuro-surgeons. We pre-
sented a HOG based loss function in Attention UNet for 3D
segmentation of HC, a complex irregular structure in brain.
We also designed a pooling function to address the derivabil-
ity issue of histogram in HOG. In the future, we plan to incor-
porate shape based loss function to accurately detect struc-
tures of varying shapes and sizes. Another direction of fu-
ture research will be to further increase performance by using
state-of-the-art backbone segmentation models.
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