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Abstract—One of the most common sleep-related disorder is 

Obstructive Sleep Apnea Syndrome (OSAS). Increased upper 
airway resistance during sleep causes partial or full airflow 
interruptions. In stroke patients, severe OSAS is increases the risk 
of mortality, neurological impairments, functional result after 
rehabilitation, and uncontrolled hypertension, making OSAS 
identification and treatment crucial. Polysomnography is the best 
OSAS test. In this work, it is proposed to use PSG signals to 
identify different sub-types of OSAS. Although many works have 
been done to detect OSAS but no work has been done till now to 
detect the sub-types of OSAS. It is of great medical importance to 
find out the sub-types of OSAS in order to plan proper treatment 
and diagnosis for the patient. Technically, it is more challenging 
to detect sub-types rather than just detecting the presence of 
OSAS. Deep learning architectures find use in extracting features 
from PSG signals. They further enhance  learning  to  classify  
the 4 different categories of sleep apnea. Results demonstrate 
that a mean accuracy of 94.26% is achieved with the proposed 
methodology. 

Index Terms—sleep apnea, polysomnography, deep learning, 
classification, signal processing 

 
I. INTRODUCTION 

Sleep Apnea (SA) is a condition characterized by the 

intermittent interruption or decrease in the flow of air during 

sleep [1]. The condition is distinguished by the occurrence    

of Obstructive Sleep Apnea (OSA), which is defined as either 

complete or partial obstruction of the upper airways, or Central 

Apnea, which is characterized by a reduction or cessation of 

the respiratory motor output of the medulla. These conditions 

can occur individually or in combination. Two respiratory 

episodes that can be detected in SA include complete cessation 

of respiration, also known as apnea, and decreased airflow, 

referred to as hypopnea [2]. These occurrences results in 

reduced oxygen levels (known as hypercapnia), as well as 

increased activity of sympathetic nerve, variations in  heart 

rate and blood pressure. The physiological changes mentioned 

above have an impact on the sleep cycle of patients, leading  

to brain arousal, disturbance in different sleep stages, and 

fragmentation of sleep [3]. According to [1], the prevalence   

of SA among middle-aged individuals is approximately 10%. 

Despite the great incidence of this illness, a significant number 

of patients remain ignorant of the impact that  SA  has  on 

their breathing pattern. Consequently, a considerable number 

of individuals refrain from pursuing expert medical assistance. 

 

Numerous scholarly investigations have been conducted to 

explore the morbidity associated with SA. The findings of 

these studies indicate that the failure to promptly diagnose  

and treat SA can lead to various adverse effects, including day- 

time drowsiness [4], cognitive impairment [5], cardiovascular 

conditions such as hypertension [6], coronary artery disease 

[7], stroke and metabolic disorders like diabetes [8]. Hence, 

the timely identification of SA is imperative in mitigating 

subsequent difficulties. In this work, it is proposed to detect 

the type of Apnea such as Hypopnea, Apnea-central, Apnea- 

Obstructive and Apnea-Mixed from the polysomnography sig- 

nals measured from patients during their sleep. The remaining 

part of this paper is organized is follows. We first discuss the 

related works (Sec. II) in this field explaining the progress and 

shortcomings of current works. Then in Sec. III we discuss our 

approach in detail followed by our results in Sec. IV. We then 

conclude and discuss what can be done in future in Sec. V. 

II. RELATED WORK 

The majority of research on single-lead  OSA  (Obstruc- 

tive Sleep Apnea) detection utilizes Electrocardiogram (ECG) 

based signals and pulse oximetry. Information extraction tech- 

niques, such as analyzing data in time and frequency domains, 

are used to accurately identify patterns and trends that can help 

determine and forecast the occurrence of OSA. A synthesis   

of previous studies conducted on the Physionet Apnea-ECG 

database [9] utilizing 35 withheld and 35 released Lead-II 

ECG signals To detect OSA from ECG signals, Changyue 

Song et al. [10] used Discriminative Hidden Markov Model 

(HMM). Nonetheless, this did not provide any indication 

regarding the degree of severity of the OSA episode. The 

outcome is restricted to a Boolean value without any further 

explanation. Li et al. [11] conducted an additional investigation 

employing DNN and HMM with a single-lead ECG signal.  

The efficacy of the method was enhanced by various classi- 

fiers, including support vector machines (SVM), ANN, and 

HMM. Conversely, this research is limited by the absence of 

disease detection and classification. Qi Shen et al. [12] utilized 

a methodology that involved the use of a multiscale dilation 

attention 1-D convolutional neural network model, a multiscale 

feature extraction algorithm, and classifiers with weighted  

loss and time-dependence (WLTD). Regrettably, the network 
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model encountered significant challenges in its attempt to 

autonomously extricate features from the initial ECG data, 

thereby requiring considerable manual intervention. 

The polysomnography (PSG) [13] diagnostic procedure is 

considered the benchmark for SA diagnosis. Electrocardio- 

gram (ECG), electroechogram, electromyogram, pulse oxime- 

try, airflow measurement, and respiratory effort are all utilized 

in PSG to examine sleep and respiration parameters. Very few 

strategies for diagnosing SA with PSG have been proposed 

and implemented [14]–[16]. 

Until now, most of the works have been done using ECG 

signals available from the Apnea-ECG dataset, but recently    

a new dataset consisting of stroke unit recordings OSAS 

detection (OSASUD) [17] have been released that contains 

not only ECG data, but also PSG and other derived data like 

heart rate and oxygen saturation (Sp02) for 30 patients. Data 

of the patient spans for several hours and thus provides a rich 

and varied information for studying OSA. Hence, it is now 

possible to use this vast data repository to create better sleep 

apnea detection algorithms. 

The main objective in this work is to detect the presence or 

absence of apnea and to classify the type of apnea detected. 

III. METHODOLOGY 

In this section the details regarding the preparation of data 

and the procedure attempted for classification is discussed. 

First, the description of the dataset is made followed by the 

challenges present in the data and the way to approach is 

presented. Finally, the training of deep learning model and 

classification of the different types of apnea from the normal 

class is projected. 

A. Dataset 

OSASUD dataset [17] has been utilized in the proposed 

experiment. Thirty patients hospitalized to the stroke unit of 

the Clinical Neurology Unit of the Udine University Hospital 

for a suspected cerebrovascular event (ischemic stroke, tran- 

sient ischemic attack, or hemorrhagic stroke) between August 

2019 and July 2020 are included in this dataset. The following 

criteria  were  used  to  exclude  patients  from  the  study:  age 

< 18 years, inadequate adherence to standard monitoring 

and/or PSG, aphasia severe enough to hinder understanding 

the study protocol and/or informed consent expression, and a 

high risk of alcohol or drug withdrawal syndrome. Patients 

conducted simultaneous recording of photoplethysmography 

(PPG), electrocardiogram (ECG), and photoplethysmography 

(PSG) overnight after providing informed consent. Vital signs 

such as heart rate (HR), Respiratory Rate per minute (RR)  

and premature ventricular contractions per minute (PVC) were 

derived from the ECG recordings for each patient. Oxygen  

saturation (Sp02) level were derived from the PPG. Apart from 

these vital signs, the dataset also has several hours of recording 

of PPG signal (frequency 80Hz), ECG signals from  three  

lead sources with frequency 80Hz each and five PSG signals 

(abdomen, flow, position, snore and thorax). PSG signal of 

flow  was sampled  at  20Hz while  the  remaining PSG signals 

 

 

Fig. 1: PSG signal of 2000 seconds 

 

were sampled at 10Hz. Annotation for each second of the  

data is provided. Each second is annotated with one of the   

five labels - central apnea, obstructive apnea, mixed apnea,  

hypopnea or normal. The first four levels denote the presence 

of some type of sleep apnea while the normal label denotes 

that the signal for that particular second  has  no  apnea.  In 

this work, the authors have used PSG signals. Clinically, the 

reference standard for diagnosing SA is PSG, which is also   

an effective method for monitoring sleep conditions. [18]. A 

representative of the PSG signal from one of the samples in the 

dataset is shown in Fig. 1.Further details regarding the sensors 

and patient demographics can be found from the original paper 

[17]. 

B. Data pre-processing 

The authors have applied a variety of pre-processing tech- 

niques to each type of data. The details of which are given 

below- 

1) Data cleaning: After analysing the data, many missing 

values were found in the dataset. Whenever a missing data 

value is found in any of  the  features  (vital  signs,  PPG,  

ECG and PSG signals), the missing value along with the 

corresponding data were removed for all other features such 

that the total number of seconds of data remains same for all 

the features. 

2) Outlier detection and removal: Outliers were detected in 

all the features. A value x is considered an outlier if x µ > 

2 σ where µ and σ are the mean and standard deviation of 

that particular feature to which x belongs to. It is observed  

that 14% of vital signs and PSG data are outliers while 8%   

of ECG and PPG data are outliers. Hence a total of 14% data 

from the dataset were removed. 

3) Windowing: In order to provide contextual information 

to the classification model, re-structure of the data was needed 

into fixed length windows containing a few seconds of data 

and an associated label for that window. Let the total number 

of seconds for which the clean and outlier removed data is 

available be N . Initially each vital sign feature in the data  

was organised as a 1D array of size N where each element 

corresponds to one second data and each element has an 

associated label. The PPG data was organised as a 2D array   

of size N 80 as each second has 80 data values (sampled at 

80Hz). The ECG data of each lead was also organised as a 2D 

array of size N × 80 as the sampling frequency was 80. The 

PSG data was also organised as a 2D array of size N × 10  

(N × 20 in case of PSG flow). 
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Fig. 2: Count of each individual classes in the dataset after 

windowing 

 

These arrays were divided with N seconds into M windows 

of 60 seconds each. But windows were carefully selected by 

searching for a particular second of data that was labelled      

as one of the apnea class, then taking 30 seconds after and    

29 seconds before that data point and considered it as one 

window. A sliding window of 60 seconds was created for 

windows belonging to the normal class (having no apnea 

labels) and checked whether any value in that 60 second 

window has any label other than normal. The normal class 

window was chosen that satisfies the above criteria. Hence, 

after windowing, each vital sign feature was represented by     

a  M  60  matrix.  The  PPG  feature  was  represented  by  a 

M   60   80 matrix. Each ECG feature was represented by a   

M  60  80. PSG flow was represented by a M  60  20   

matrix whereas the other PSG features were represented by a  

a M 60 10 matrix. 

4) Class distribution: After extracting windows from the 

data, it was found that windows belonging to normal class   

are much higher in number than the apnea classes. The total 

number of windows belonging to all of the apnea classes is 

15268 while the number of normal windows is 61242. To 

mitigate this class imbalance normal windows were discarded 

and random selection of 15268 windows were done in order  

to balance the normal and apnea classes. Since, the number   

of data samples were relatively high, no data augmentation 

TABLE I: Mapping of class labels to class names 
 

Class Label Class Name 

0 Normal 

1 Central apnea 

2 Mixed apnea 

3 Obstructive apnea 

4 Hypopnea 

 
cated signal analysis techniques because to its effectiveness in 

automatic feature extraction [23], [24]. An instance of CNN 

was employed by Kiranyaz et al. (2015) for the purpose of 

ECG categorization. In this case, the classification model was 

constructed using a straightforward and efficient implementa- 

tion of a CNN called LeNet-5 [25]. 

1) Modified LeNet-5: The LeNet-5 model, as originally 

presented by [25], was specifically developed to address the 

task of character recognition. The architecture had an input  

layer, two convolutional layers, two fully connected layers,  

two max pooling layers, and an output layer, totaling seven 

layers. The specifics of every layer are outlined in LeCun’s 

publication from 2015. In contrast to character recognition 

task, the time series utilized in this study consisted of one- 

dimensional data, which presents a notable distinction from 

the two-dimensional character recognition tasks. In contrast  

to the vast number of training samples often used in character 

or picture classification, the data sets included in this work 

were very limited, hence heightening the potential for over- 

fitting. The feature maps, convolution layer strides, and fully- 

connected layer nodes in conventional LeNet-5 may not be 

appropriate for this particular scene. Hence, the modified 

LeNet-5 architecture from [26] was adopted for this task. They 

used 1D convolutional layers instead of 2D and used dropout 

layers to prevent over-fitting. The overall model architecture 

is shown in Fig. 3. 

2) Loss Function: The loss function in deep learning al- 

gorithms is an essential element that measures the difference 

between the projected outputs produced by the neural network 

and the actual values of the target in a given dataset. A loss 

function quantifies the performance of a neural network model 

in classification tasks. The goal is to minimize the loss value 

generated by the loss function. 

In this work the categorical cross entropy  loss  function 

was used, which is one of the most popular loss functions    

for classification tasks and has been used in many research 

techniques were applied. The count of each individual apnea 

classes is shown in Fig. 2. 
works [26], [27]. Formally, a set of 

M 

M windows Xi; yi 
i=1 

C. Deep learning model 

In order to learn from this huge amount of data, a convo- 

lutional neural network (CNN) is trained. CNNs have been 

widely utilized in the realm of artificial intelligence (AI) in 

recent years [19]. The approach is a deep neural network 

are taken, where Xi is the original window containing signal 

data and yi is a class label of the window i.e., 0,1,2,3 or 4, the 

meanings of which are given in table I. The categorical cross 

entropy function is used to calculate the disparity between the 

predicted label ŷi and the actual label yi- 
M 

that replicates the complex hierarchical organization of human 

vision. It has been effectively utilized in tasks such as image 

J (ω, b) 
 1 

y 
M 

l=1 
l,1 logŷl,1 + · + y l,K logŷl,K (1) 

classification, natural language processing (NLP), and speech 

recognition [20]–[22]. CNN is utilized for developing sophisti- 

where ω and b represent the weights and biases of modified 

LeNet-5 network layers, respectively. K is the number of class 
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Fig. 4: Outliers marked as dots above and below the 75th and 

25th percentile of each signal respectively 

 

category  (K  =  5  in  this  case)  and  ŷl,K  corresponds  to  the 

softmax value of the kth class category, defined as: 

ezk 

ŷl,k = softmax(zk) =  

K 
j=1 e

zj 

(2) 

IV. RESULTS AND DISCUSSION 

In this section, the outcomes of experiments are shown. 

Among several data pre processing techniques as described in 

III-B the removal of outliers had a major impact on accuracy 

of the model and is brieffly discussed in the following part.  

Before that a discussion on the evaluation metrics is provided, 

followed by the impact of outlier removal and finally the 

classification performance will be discussed in detail. 

A. Evaluation metrics 

The model performance was assessed using the following 

metrics: specificity (Sp), sensitivity (Sn), accuracy (Acc), and 

area under the curve (AUC), as demonstrated by the majority 

of other publications [26], [28]. They are defined below- 

TN 
specificity = 

 
sensitivity = 

 
 

TN + FP 
TP 

 
 

TP + FN 

accuracy = 
TP + TN 

 
 

TP + TN + FP + FN 

 
 
 
 
 
 

Fig. 3: Architecture of modified LeNet-5 adjusted for learning 

from time series data 

where FP , TP , FN and TN stands for ’false positive’ and 

’true positive’, ’false negative’ and ’true negative’, respec- 

tively. 
 

B. Impact of outlier removal 

As mentioned in Sec. III-B2, PSG signals had around 14% 

outliers. The outliers can be visually portrayed in the box plots 

of each PSG signal in Fig. 4. Table II shows the accuracy of 

the model with and without outliers. 
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(a) ROC  curve of Normal class (b) ROC  curve of Apnea central class (c) ROC curve of Apnea mixed class 

(d) ROC  curve of Apnea obstructive class (e) ROC curve of Hypopnea class 

Fig. 5: ROC  curve for the five  classes 

 
 

C. Model performance 

The results of the performance of the proposed model is 

shown in Table III. Fairly good results have been achieved 

using only PSG data. 

Very few works have used PSG data for SA detection. 

Hence, comparison with other baseline DL models is shown  

in Table IV. Model complexity and kernel size affects the 

overall accuracy of the model. The first model (CNN) is a 

very basic CNN model with only one 1D Convolutional Layer 

and two fully connected (FC) layers. The convolutional layer 

had kernel size 5. For the second comparison, the modified 

LeNet5 was used but with kernel size 3 (K3) for all of its 

convolutional layers. When compared to the same architecture 

with kernel size 5 (K5), it can be seen that even the kernel 

size is a crucial aspect for the model to learn properly. The 

kernel size determines features from how many times frames 

of data points are being extracted at a time. A smaller kernel 

size will extract too little features which may not be enough   

to learn the differences among various classes, while a bigger 

kernel size may extract ambiguous features as the receptive 

field will be too large. Hence, an optimal kernel size needs to 

be determined. The final proposed model uses kernel size 5. 

No work was found that have done multi class classification 

of  SA.  [28]  have  done  binary  classification,  i.e.,  to  detect 

 
TABLE II: Accuracy of the model with and without outliers 

 

Configuration Accuracy % 

With outliers 82.48 

Without outliers 94.26 

 

whether a person has sleep apnea or not  using  PSG  and  

Sp02 data. From Table III, accuracy of the first row indicates 

how well the model is able to detect normal class and its 

corresponding precision value (0.981) supports the fact that the 

model has indeed able to learn the distinction among normal 

vs. other classes and the corresponding accuracy is not null 

accuracy. Hence, the accuracy value (97%) of normal class 

can be considered as the binary classification accuracy which 

is marginally better than the accuracy of [28]. After extensive 

literature search it was found that none of the works have done 

multi-class classification to detect the different types of apnea. 

Hence, comparative results with other works cannot be shown 

due to lack of experiments regarding multi-class SA detection 

in the literature. The Receiver Operating Characteristic (ROC) 

for each of the class is shown in Fig. 5. 

 
V. CONCLUSION 

This work presents a DL framework for detection of differ- 

ent types of SA based on CNNs using only PSG data. The DL 

framework is based on a modified LeNet5 CNN architecture 

adjusted for 1D signal data. This method demonstrated higher 

performance and generated state-of-the-art findings using a 

public dataset gathered from real-life settings. Its average 

accuracy was 94.26%. 

In future it is proposed to incorporate more types of signals 

like ECG, PPG available in the dataset and also other derived 

data like Sp02 and heart beat data to further improve detection 

performance. Also, attempts need to be made to increase the 

number of samples of classes having less data to ensure all   

the classes are balanced using data augmentation techniques. 
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TABLE III: Results of the proposed model for detection of different types of Sleep Apnea. Class values are given in Table I 
 

Class Precision Recall F1 Score Sensitivity Specificity Accuracy 

0 0.981 0.973 0.977 0.97 0.98 0.97 

1 0.952 0.892 0.921 0.908 0.997 0.908 

2 0.961 0.927 0.944 0.912 0.998 0.912 

3 0.946 0.942 0.944 0.96 0.991 0.96 

4 0.929 0.962 0.945 0.962 0.974 0.963 

Mean 0.954 0.939 0.946 0.942 0.982 0.9426 

 

TABLE IV: Comparing the accuracy of each class for the 

proposed model with other deep learning models. 
 

 CNN Modified LeNet5-K3 Modified LeNet5-K5 

0 0.78 0.963 0.97 

1 0.712 0.88 0.908 

2 0.723 0.897 0.912 

3 0.756 0.93 0.96 

4 0.764 0.951 0.962 

Mean 0.747 0.924 0.942 
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